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Abstract

We show that the sequence-space Jacobians of stationary models have a special
“quasi-Toeplitz” form. This result implies a simple test for existence and uniqueness
of solutions, helps significantly reduce truncation error, and allows the solution of
very large sequence-space systems. We apply these insights to a heterogeneous-agent
New Keynesian model, showing how to identify thresholds for determinacy and also
how to solve the model using fast iterations rather than direct operations on truncated
matrices. We leverage these results to solve a 177-country version of the model with a
realistic trade network almost instantly, in spite of its state space having dimension of
almost 1 million.
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1 Introduction

In macroeconomics, it has become increasingly common for researchers to solve their
models in the sequence space: the space of perfect-foresight impulse responses. Due
to certainty equivalence, to first order these are the same as the impulse responses in a
fully stochastic model (Boppart, Krusell and Mitman 2018.) We can solve for them by set-
ting up a linear system in the sequence space, where the mappings between sequences
are sequence-space Jacobians. This approach is particularly useful for heterogeneous-agent
models, where the state space can be very large and sequences offer a more parsimo-
nious representation of equilibrium. Using sequence-space Jacobians, researchers can
solve rich heterogeneous-agent models at speeds that are otherwise unachievable. (Au-
clert, Bardóczy, Rognlie and Straub 2021.)

At the same time, the sequence-space approach currently suffers from somemajor lim-
itations. First, there does not exist a standard criterion for determinacy and existence of
solutions in the sequence space. Second, in principle, we are solving for sequences with
infinite length, and sequence-space Jacobians are matrices with dimension ∞ × ∞. In
practice, these matrices are truncated to some maximum horizon T, but to avoid errors
from truncation, this T—and therefore the sequence-space system—sometimes needs to
be quite large. Third, a typical model requires simultaneously solving for n unknown
sequences, and in some models—such as network or trade models—n can be very large.
For these models, it may be prohibitively expensive to solve the nT × nT sequence-space
system.

In this paper, we overcome these limitations by proving and exploiting a structure re-
sult for sequence-space Jacobians. We show that under general conditions, these Jacobians
are quasi-Toeplitz operators on the sequence space, and apply this structure result in three
ways. First, we derive a simple “winding number” criterion for existence and uniqueness,
building on Onatski (2006). Second, we obtain a much more parsimonious way to store
and handle Jacobians, opening the door to more efficient, truncation-free computations.
Finally, we provide a useful preconditioner to solve models iteratively, enabling the so-
lution of even enormous models—such as, in our application, a 177-country fiscal policy
model, with heterogeneous agents in each country—in a matter of seconds.

Structure result. We start with the space of square-summable sequences, ℓ2, which con-
tains all impulse responses consistent with finite variance in a stochastic economy. Our
Jacobians are then linear operators mapping ℓ2 to itself. We say an operator J = T(j) is
Toeplitz if each diagonal in its matrix representation is constant. A Toeplitz operator is
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Figure 1: Examples of quasi-Toeplitz sequence-space Jacobians

characterized by the two-sided sequence j = {. . . , j−1, j0, j1, . . .} that gives the value on
each diagonal, Jt,s = jt−s. A quasi-Toeplitz operator is a Toeplitz operator plus a com-
pact operator E: J = T(j) + E. The matrix entries Et,s of a compact operator go to zero
as t, s → ∞, so a quasi-Toeplitz Jacobian looks Toeplitz for shocks that occur far from
zero—in other words, shocks that are sufficiently well-anticipated.

Why are quasi-Toeplitz operators so special? The Jacobians of simple macro equations
are often Toeplitz, but composing any two macro equations involves the product of two
Toeplitz operators, which is quasi-Toeplitz. We provide an economic interpretation for
the new term E: it represents the effect of missing anticipation for a shock that is not known
before t = 0. For instance, figure 1(a) plots columns of the Jacobian mapping nominal
marginal cost to aggregate prices in the Calvo model. For shocks to marginal cost at high
enough s, the columns of this Jacobian are shifted versions of each other, with Jt,s depend-
ing only on t − s, as in a Toeplitz matrix. But for the unexpected shock to marginal cost at
s = 0, the aggregate price response is smaller, since sticky price-setters do not react prior
to date 0.

We show that, as long as the effects of missing anticipation in a model eventually die
out, its Jacobians will be quasi-Toeplitz. We use this insight to prove two key structure the-
orems. First, we show that for any stationary heterogeneous-agent block, sequence-space
Jacobians are quasi-Toeplitz. As an example, figure 1(b) plots the Jacobian of aggregate
consumption with respect to income in a standard heterogeneous-agent model. Second,
and even more generally, we show that as long as a system of expectational linear dif-
ference equations satisfies the usual conditions for a stable solution, that solution can be
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represented with quasi-Toeplitz Jacobians. These theorems—together with the fact that
the quasi-Toeplitz class is closed under addition and multiplication—imply that the vast
majority of sequence-space Jacobians in economic applications are quasi-Toeplitz. We ap-
ply this result in three ways.

Existence and uniqueness of solutions. To solve for equilibrium, we generally must
solve for x in a system of the form Jx = y, where J is a sequence-space Jacobian. There are
two key questions one can ask about this system: does a solution exist, and are solutions
unique? If J is Toeplitz, then it is well-known that the winding number of j(z) ≡ ∑∞

k=−∞ jkzk,
the number of times the graph of j(z) wraps counterclockwise around the origin in the
complex plane as z goes counterclockwise around the unit circle, gives an exact answer.
A positive winding number implies nonexistence, and a negative winding number im-
plies indeterminacy; there is a unique solution if and only if the winding number is zero.
We show that this winding number criterion extends “generically” to quasi-Toeplitz J—
meaning that mathematically, it applies for almost every possible J. The non-generic cases
where the criterion fails are rare and simple to detect. Importantly, these results all extend
to the “block” quasi-Toeplitz case, where x and y each stack multiple sequences.

For linear difference equations in canonical form, this winding number test is equiva-
lent to standard root-counting tests like Blanchard and Kahn (1980), as previously shown
by Onatski (2006). The winding number test is more general, however, and can be ap-
plied directly in the sequence space, allowing us to bypass high-dimensional state spaces.
We can also reuse information across multiple calculations: for instance, when we use the
winding number test to evaluate determinacy in a heterogeneous-agent model, only triv-
ial computations are needed to redo the test for different Taylor rule coefficients ϕ and
Phillips curve slopes κ.

Limiting truncation error. In practice, computations with Jacobians are usually done
by truncating them to some finite horizon T. For large enough T, the resulting solutions
generally converge to the truth—but in practice this requires fine-tuning T, and can also
involve impractically large systems in some cases. An alternative is to bypass large matrix
operations by directly exploiting quasi-Toeplitz structure. We provide two complemen-
tary approaches. First, we can replace direct solutions with much more efficient iterative
solutions by using the Toeplitz part of the inverse—which is cheap to calculate—as a “pre-
conditioner” for iterative methods, such as Krylov subspace methods. Second, we can
avoid working with large, truncated T × T matrices by splitting them into Toeplitz and
compact parts, each of which can be handled efficiently: the Toeplitz part with standard
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techniques, and the compact part via a low-rank approximation.

Solving large-scale systems. Finally, we extend our results to the practical n > 1 case,
in which multiple aggregate sequences are solved for simultaneously. To illustrate how
our computational insights can be useful in models with very large n, we solve for the
propagation of fiscal policy in a large multi-country model, where 177 countries consume
each others’ output according to a trade matrix we take from the data. Although this
model is far too large to be solved directly as a sequence-space system, using an iterative
approach we obtain impulse responses in just a few seconds on a laptop.

Related literature. Our winding number test is closely connected to, and builds upon,
the test introduced by Onatski (2006) for block Toeplitz systems. Our most important con-
tribution is to extend the test to block quasi-Toeplitz systems, making it readily applicable
to a larger space of models, including heterogeneous-agent models for which other tests
are impractical. We also address the Sims (2007) critique of genericity in Onatski (2006),
showing that while non-generic economic models do exist, these models suffer from both
nonexistence and indeterminacy—and checking for nonexistence is relatively simple. Fi-
nally, we build upon Onatski (2006) by showing that when a solution exists, it is itself
given by a block quasi-Toeplitz mapping, and by providing ways to efficiently reuse com-
putations when evaluating the winding number.1

Although the literature on sequence-space solution methods in economics is rapidly
growing, prior to this paper there has been little direct use of Toeplitz or quasi-Toeplitz
structure. An early working paper version of Auclert et al. (2021), superseded by this
paper, showed that heterogeneous-agent blocks have asymptotically Toeplitz Jacobians
and derived a winding number test.2 Wolf (2025) exploits Toeplitz structure in analyti-
cal HA models to prove that the implied consumption Jacobians are invertible. Auclert,
Cai, Rognlie and Straub (2024b) use the discounted Toeplitz part of Jacobians (i.e. j(β) =

∑∞
k=−∞ βk jk) to characterize the steady state of optimal fiscal policy with commitment. In

the mathematical literature, by contrast, there is both a longstanding body of work on
Toeplitz operators (Böttcher and Silbermann 2012) and also a more recent practical litera-
ture on using quasi-Toeplitz structure for computation (Bini, Massei and Robol 2019).

Our paper relates to an older literature on rational expectations models in the time
and frequency domain, including work by Hansen and Sargent (1980a), Hansen and Sar-

1In relatedwork, Hagedorn (2023) provides a different local determinacy criterion for incompletemarkets
models, which relies on dimension reduction.

2See Auclert, Bardóczy, Rognlie and Straub (2019), who called this structure—which is implied by, but
weaker than, quasi-Toeplitz—“asymptotic time invariance”.
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gent (1980b), and Whiteman (1985). This literature studies equilibrium by using the z-
transforms of impulse responses. The mappings between these z-transforms can be inter-
preted as the action of quasi-Toeplitz operators, but this interpretation has not previously
been made explicit. More recent papers in this tradition include Tan and Walker (2015),
Huo and Takayama (2024), and Meyer-Gohde (2024). Relative to this literature, our paper
focuses less on analytical solutions, and more on models that require numerical compu-
tation, especially heterogeneous-agent models.

Finally, our use of a Krylov subspace method (GMRES) to iteratively solve large-scale
systems connects us with a small literature using related methods in macroeconomics,
includingMrkaic (2002) and Gilli and Pauletto (1998) for iterative computation, and Reiter
(2010) and Ahn, Kaplan, Moll, Winberry and Wolf (2018) for model reduction.

Layout. The paper is structured as follows. Section 2 introduces Toeplitz and quasi-
Toeplitz operators and derives our structure theorems. Section 3 derives and applies the
winding number test for quasi-Toeplitz operators. Section 4 shows how quasi-Toeplitz
structure can be exploited to avoid large matrix computations, and section 5 applies these
methods to solve a large multi-country model. Section 6 concludes.

2 Quasi-Toeplitz sequence-space Jacobians

2.1 Sequence-space Jacobians as operators on ℓ2

As Auclert, Rognlie and Straub (2024a) show, in some models it is possible to derive an
aggregate consumption function Ct({Zs}), which maps the path of aggregate after-tax in-
come {Zs}∞

s=0, starting at date 0, to the resulting path of aggregate consumption {Ct}∞
t=0,

assuming a steady state prior to date 0. This function gives the consumption effect of a
perfect-foresight “MIT shock” to income—and as Boppart et al. (2018) point out, to first
order, this is the same as the impulse response of C to Z in a fully stochastic rational ex-
pectations model.3

The derivative of C, the sequence-space Jacobian M, maps first-order income impulses
dZ ≡ {dZs}∞

s=0 around the steady state to consumption impulses dC ≡ {dCt}∞
t=0. In a

stochastic model, such Jacobians can be interpreted as mappings between the coefficients
of MA(∞) processes. (See Auclert et al. 2021.) For these processes to have finite variance,
it is necessary for their coefficients to be square-summable, in which case we can regard

3In this paper, we will assume rational expectations, but Jacobians can also be modified to reflect depar-
tures from rational expectations (Auclert, Rognlie and Straub 2020). These modifications generally preserve
quasi-Toeplitz structure.
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M as a mapping from the space of square-summable sequences ℓ2 to itself.4 Formally, we
say that M is a bounded linear operator on the real Hilbert space ℓ2.5

In the following sections, we will consider a variety of sequence-space Jacobians J, all
understood as bounded linear operators on ℓ2, and show that they have a very special
“quasi-Toeplitz” structure. Any Jacobian J : ℓ2 → ℓ2 can be represented by a matrix
[Jts]∞s=0,t=0, and we will refer to operators and their matrices interchangeably.

2.2 Toeplitz operators

Webeginwith an example. In the log-linearizedCalvomodel, the log reset price p∗t chosen
by a firm and the log aggregate price level pt are determined in response to log nominal
marginal cost mct according to the equations

p∗t = (1 − βθ)
∞

∑
s=0

(βθ)sEt[mct+s] (1)

pt = (1 − θ)
∞

∑
s=0

θs p∗t−s. (2)

In response to an MIT shock, for any variable x we have Et[xt+s] = xt+s for s ≥ 0 and
Et[xt+s] = 0 for s < 0. Given this, we can rewrite equations (1)–(2) as p∗ = Jp∗,mcmc and
p = Jp,p∗p∗. Here, the Jacobian Jp∗,mc maps sequences of marginal costs mc = {mct}∞

t=0

to sequences of reset prices p∗ = {p∗t }∞
t=0, and the Jacobian Jp,p∗ maps sequences of reset

prices to sequences of aggregate prices p = {pt}∞
t=0. These Jacobians have upper (forward-

looking) and lower (backward-looking) triangular forms, respectively:

Jp∗,mc = (1 − βθ)


1 βθ (βθ)2

0 1 βθ
. . .

0 0 1 . . .
. . . . . . . . .

 and Jp,p∗ = (1 − θ)


1 0 0

θ 1 0 . . .

θ2 θ 1 . . .
. . . . . . . . .

 . (3)

These Jacobians both belong to a special class of operators on ℓ2, called Toeplitz operators.
4This is not entirely without loss of generality: in a representative-agent model, M maps to multiples

of 1, which is not square-summable. This reflects the well-known fact that linearized representative-agent
models can have a random walk component and thus infinite unconditional variance (Schmitt-Grohé and
Uribe 2003). As we will show, sequence-space Jacobians for stationary models are better-behaved.

5Formally, M is the Fréchet derivative of C around the steady state, where C : ℓ2 → ℓ2 is recentered so that it
is the mapping from deviations in income {Zs − Z} vs. the steady state to deviations in consumption {Cs −
C}. All Fréchet derivatives are bounded linear operators. For useful introductory references to functional
analysis, see Luenberger (1997) and Axler (2020).
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Figure 2: Columns of Calvo Model Jacobians

Definition 1. We say a linear operator J on ℓ2 is Toeplitz if its matrix has constant entries along
each diagonal

J = T(j) ≡


j0 j−1 j−2

j1 j0 j−1
. . .

j2 j1 j0
. . .

. . . . . . . . .

 , (4)

where the j = {jk}∞
k=−∞ are absolutely summable, ∑∞

k=−∞ |jk| < ∞.

Lemma 1. The linear operator T(j) defined by (4) is bounded, with ‖J‖ ≤ ‖j‖1.6

Proof. See appendix B.1. ■

If we plot the columns of a Toeplitz Jacobian and interpret them as impulse responses,
they satisfy translation invariance with respect to time: the response at date t to a shock
at date s is the same as the response at date t + k to a shock at date s + k. Figures 2(a) and
2(b) depict this property for the Jacobians Jp∗,mc and Jp,p∗ defined in (3).

By contrast, themapping between mct and pt—which combines equations (1) and (2)—
involves the composition Jp,p∗Jp∗,mc. This pass-through matrix (Auclert, Rigato, Rognlie and
Straub 2024c) is not Toeplitz, as evident from the lack of translation invariance from s = 0
to s = 5 in figure 2(c). We will return to this fact.

6Formally, a linear operator J is bounded if there exists some M ≥ 0 such that for all x, ‖Jx‖ ≤ M‖x‖.
The minimum such M is the operator norm ‖J‖. Bounded operators are continuous in their inputs.
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The Calvo model is hardly a special case. Since most simple macroeconomic equa-
tions are written in a time-invariant way, they will generally have Toeplitz representa-
tions in the sequence space. For instance, the log-linearized Euler equation Et[rt+1] =

σ (Et[ct+1]− ct) can be written in terms of Toeplitz operators. To take an even simpler
example, the familiar lead F and lag L operators are also Toeplitz:

F ≡


0 1 0

0 0 1 . . .

0 0 0 . . .
. . . . . . . . .

 L ≡


0 0 0

1 0 0 . . .

0 1 0 . . .
. . . . . . . . .

 . (5)

In definition 1, we assume that j is a scalar sequence, but more generally it can be a ma-
trix sequence, in which case T(j) is called block Toeplitz. We develop this case formally in
section 3.7. The intuition and results we derive with Toeplitz operators will carry over to
the block case with few modifications.

Symbols. Each Toeplitz operator T(j) is defined by a two-sided sequence j. This may
be transformed into another object, the symbol, which will prove to be particularly useful
when we multiply and invert Toeplitz operators.

Definition 2. The symbol of a Toeplitz operator T(j) is the complex-valued function j over the
unit circle T = {z ∈ C : |z| = 1}, j : T → C, given by the Laurent series

j(z) ≡
∞

∑
k=−∞

jkzk. (6)

This series always converges, since we assumed that the jk are absolutely summable.
For Toeplitz J, evaluating thematrix-vector product y = Jx is equivalent tomultiplying

the symbol j(z) and x(z) ≡ ∑∞
k=0 xkzk to obtain a new complex-valued function y(z) on T,

and then defining the output sequence y to be the coefficients on nonnegative powers in
the Laurent expansion of y(z). This connects our analysis to the early literature on rational
expectations models in the frequency domain, including Hansen and Sargent (1980b,a)
and Whiteman (1985), where such operations were common.7

7Formally, we can regard a Toeplitz operator T(j) as an operator on the “Hardy space” H2(T), which is
the space of analytic functions—whose Laurent series have no negative powers—on the unit circle. For any
analytic function x(z) = ∑∞

k=0 xkzk, the Toeplitz operator T(j) multiplies by j(z) and then projects back onto
the Hardy space by dropping all the negative powers in the Laurent series. This characterization of Toeplitz
operators—as the composition of projection and multiplication—is a common viewpoint in the mathemat-
ical literature, but for our purposes it is useful to work more explicitly with matrices and sequences.
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2.3 Quasi-Toeplitz Jacobians: missing anticipation, compact correction

Is the product of Toeplitz operators still Toeplitz? Generally not. Take the lead and lag
operators F and L. One can verify that FL is the identity I, which is Toeplitz. But LF is not
the identity. Instead, it is

LF =


0 0 0

0 1 0 . . .

0 0 1 . . .
. . . . . . . . .

 , (7)

which is almost the identity, but with the (0, 0) entry replaced by a 0.8 As a result, this
matrix is not Toeplitz.

Where did the non-Toeplitz part come from? If there is an unanticipated shock at
date 0, then the lagged expectation at date 0—which is the expectation at date −1 of x0,
E−1[x0]—is zero. We call this missing anticipation, and it happens whenever we take the
lag of a lead.

Now consider the case of general Toeplitz operators T(a) and T(b). Their product
C ≡ T(a)T(b) has entries

Cs+j,s =
∞

∑
u=0

as+j−ubu−s (8)

Substituting v ≡ u − s in the sum and taking the limit as s → ∞:

Cs+j,s =
∞

∑
v=−s

aj−vbv −→
∞

∑
v=−∞

aj−vbv ≡ cj (9)

It follows that asymptotically, C looks Toeplitz, with entries c = {cj} given by the convo-
lution of a and b. The corresponding symbol c(z) is simply the product a(z)b(z), which
follows from the convolution theorem for z-transforms.

To illustrate this, consider the Calvo pricing example from (3), and take the product of
T(a) ≡ Jp,p∗ , whichmaps reset prices to aggregate prices, with T(b) ≡ Jp∗,mc, whichmaps
marginal costs to reset prices. As we can see in figure 2c, the resulting “pass-through”
matrix C = T(a)T(b) from marginal cost to aggregate prices is not Toeplitz: in early
periods, the reaction of prices to marginal cost shocks is less, because pricesetters before
date 0 do not anticipate the shocks. Eventually, however, the columns of the pass-through
matrix converge to Toeplitz form: visually, the responses to a s = 10 and s = 20 shock are
almost identical, just shifted.

8F maps (x0, x1, x2, . . .) to (x1, x2, . . .), and then L maps this to (0, x1, x2, . . .), replacing the x0 with a 0.
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The effects ofmissing anticipation. Writing t ≡ s+ j, (9) implies the following recursion
for all t, s > 0, relating Ct,s to the previous entry Ct−1,s−1 on the same diagonal:

Ct,s = Ct−1,s−1 + atb−s (10)

In our pricing example, b−s = (1 − βθ)(βθ)s and at = (1 − θ)θt. Consider, for instance,
the response C4,3 of aggregate prices at date 4 to a marginal cost shock at date 3. Equation
(10) says that this is C3,2 plus the additional term a4b−3. This term reflects the effect of
the marginal cost shock on date-0 reset prices (b−3), times the effect of these on date-4
aggregate prices (a4). This term is not in C3,2, because no one anticipates a date-2 shock 3
periods in advance.

As we move down the diagonals of C, we add more terms of the form atb−s until con-
vergence. The difference E ≡ C − T(c) between C and its Toeplitz limit is given by the
remaining terms on the same diagonal:

Et,s ≡ Ct,s − ct−s = −
∞

∑
k=1

at+kb−s−k (11)

Economically, we can think of cj as giving the effect, at an offset of j, of an infinitely well-
anticipated shock. But if the shock happens at some finite date s, then (11) tells us that we
need to subtract off any anticipatory effects with a horizon of s + 1 or more, because the
shockwas unanticipated prior to date 0. As t and s becomehigher, themissing anticipation
in (11) becomes smaller and smaller, and Et,s goes to zero. For instance, in our pricing
example, the terms atb−s are proportional to βsθs+t, decaying exponentially.

Indeed, it is possible to show a stronger result: that the operator E is compact in ℓ2.9 We
summarize our results thus far in the following proposition.

Proposition 1. The product of any two Toeplitz operators T(a) and T(b) is

T(a)T(b) = T(c) + E (12)

where c ≡ a ∗ b is the convolution of a and b, with c(z) = a(z)b(z), and E is the compact operator
defined by (11).

Proof. See appendix B.1. ■

This proposition is encouraging. Even though the product of two Toeplitz operators
9There are several equivalent ways to define compactness on a Hilbert space. One is that a compact

operator can be arbitrarily well-approximated, in the operator norm, by finite-rank operators.
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is not usually Toeplitz, it belongs to a more general class of highly structured operators:
quasi-Toeplitz operators, defined to take the form on the right in (12).10

Definition 3. We say a bounded linear operator J on ℓ2 is quasi-Toeplitz if it can be written as

J = T(j) + E (13)

where T(j) is Toeplitz and E is a compact operator on ℓ2 known as the (compact) correction.

Indeed, this more general class is closed under multiplication.

Proposition 2. The product of any two quasi-Toeplitz operators is quasi-Toeplitz.

Proof. For any A1 = T(a1) + E1 and A2 = T(a2) + E2, we compute A1A2 = T(a1)T(a2) +

E1T(a2) + T(a1)E2 + E1E2. The first term is quasi-Toeplitz by proposition 1, and the other
terms are products of bounded and compact operators and thus compact. ■

This property suggests that we will often see quasi-Toeplitz operators when solving
models to first order in the sequence space, because this often involves composing Ja-
cobians that are Toeplitz—because the underlying equations are time-invariant, like in
(3)—with each other.

2.4 Connection to fake news matrix

The fake news matrix was introduced byAuclert et al. (2021) as part of a fast algorithm to ob-
tain sequence-space Jacobians for heterogeneous-agent models. For an arbitrary Jacobian
J, we define this matrix as follows.

Definition 4. The fake news matrix F corresponding to a Jacobian J is defined as

Ft,s =

Jt,s − Jt−1,s−1 t, s > 0

Jt,s t = 0 or s = 0.
(14)

The first column of F is the same as J, but later columns can be interpreted as giving
the pure effect of anticipation: concretely, for s > 0, Ft,s gives the effect at date t from
having anticipated at date 0 that a shock will happen at date s.11

10There is a growing literature on quasi-Toeplitz operators. See, e.g., Bini et al. (2019).
11For s > 0, Ft,s can also be interpreted as the response at date t to a “fake news” shock: news about a

change in input at date s that is announced at date 0 and retracted at date 1. To first order, the effect of such
a shock is equal to the effect of anticipation at date 0.
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As the following proposition shows, there is a close connection between quasi-Toeplitz
structure and the fake news matrix. If we have a quasi-Toeplitz J = T(j) + E, we can
express its components j and E easily in in terms of F . Given any absolutely summable
F , we can also build a quasi-Toeplitz J.

Proposition 3. Suppose that J = T(j) + E is quasi-Toeplitz, and let F be the corresponding
fake news matrix. Then the kth entry jk of the symbol is the sum of entries of F on the kth lower
diagonal, and each entry Et,s of the correction is minus the sum of entries after (t, s) on its diagonal:

jk ≡
∞

∑
v=max{0,−k}

Fk+v,v and Et,s ≡ −
∞

∑
k=1

Ft+k,s+k. (15)

Conversely, for any F whose entries have a finite absolute sum, the corresponding Jacobian J given
by the recursion Jt,s = Jt−1,s−1 + Ft,s for t, s > 0 and Jt,s = Ft,s for t = 0 or s = 0 is quasi-
Toeplitz, with symbol and correction given by (15).

Proof. See appendix B.2. ■

Intuitively, jk is the response, at a lag of k periods, to an infinitely well-anticipated
shock, andwe sum the effect of this anticipation at all previous periods by summing entries
of the fake newsmatrix. Meanwhile, Et,s is the effect of missing anticipation—the fact that
the shock at s was not anticipated more than s periods in advance—and we obtain it by
negating the sum of fake news entries that have horizons longer than s.

In our Calvo pricing example, the fake newsmatrix corresponding to the pass-through
matrix C is Ft,s = (1− θ)θt · (1− βθ)(βθ)s, as we can read off from (10). The second factor
(1 − βθ)(βθ)s is the anticipatory response of reset prices to a marginal cost increase in s
periods, while the first factor (1 − θ)θt gives the persistent effect of these reset prices on
aggregate prices. This is a special case of a general expression, derived in appendix B.3, for
the fake news matrix corresponding to any product of two Toeplitz matrices. Our earlier
expression (11) for the correction E in this product is a special case of (15).

In the next two subsections, we will apply proposition 3 to prove structure theorems,
showing that broad classes of sequence-space Jacobians are quasi-Toeplitz.

2.5 Structure theorem for heterogeneous-agent blocks

Sequence-space Jacobians are particularly valuable for heterogeneous-agent models, be-
cause they allow us to bypass potentially high-dimensional heterogeneity and solve for
equilibrium entirely in terms of aggregate sequences. Auclert et al. (2021) provide a fast
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algorithm to obtain Jacobians for heterogeneous-agent blocks, whichwe define following that
paper.

Definition 5. A heterogeneous-agent block consists of three equations

vt = v(vt+1, Xt) (16)

Dt+1 = Λ(vt+1, Xt)
′Dt (17)

Yt = y(vt+1, Xt)
′Dt, (18)

where v, D, and y are finite-dimensional vectors, and Xt and Yt are scalars. A steady state
of this block solves (16)–(18) for constant X. Dynamically, the block maps an input sequence
X = {Xk}∞

k=0 to an output sequence Y = {Yk}∞
k=0, given some initial D0. Assuming local

differentiability, we denote the sequence-space Jacobian of Y with respect to X around the steady
state by J.

This system of equations encapsulates three conceptually distinct steps in evaluating
a heterogeneous-agent block:

• Equation (16) is a backward iteration: it captures how vt—some representation of the
value function—is determined by future vt+1 as well as the current input Xt;

• Equation (17) is a forward iteration: it captures how the transition matrix Λ between
today’s distribution Dt and tomorrow’s distribution Dt+1 is determined by next pe-
riod’s vt+1 as well as today’s input Xt;

• Equation (18) is a measurement equation: it captures how vt+1 and Dt, together with
today’s input Xt, determine today’s output Yt of interest.

For instance, consider the household block of a standard incomplete markets model, like
in Aiyagari (1994) or Krusell and Smith (1998). Holding wages fixed, households take as
an input a sequence of asset returns x = {rt}∞

t=0 andmake consumption-savings decisions,
which result in a sequence yt = {At}∞

t=0 of aggregate asset holdings.
There is also a subclass of heterogeneous-agent blocks of particular interest, which we

call stationary heterogeneous-agent blocks.

Definition 6. A heterogeneous-agent block is stationary if:

1. the Jacobian of vt with respect to vt+1 around the steady state has all eigenvalues inside the
unit circle;

2. the steady-state transition matrix Λss has all eigenvalues except one inside the unit circle.

14



These conditions are quite loose, and hold for almost all heterogeneous-agent blocks of
interest. Condition 1 is usually guaranteed by discounting, and is necessary for backward
iteration to converge to steady-state value and policy functions. Condition 2 says that there
is a unique stationary distribution across idiosyncratic states.12

Condition 1 implies that the effect of a shock on today’s value and policy functions
decays as the shock moves further into the future. Condition 2 implies that the effect of a
change in today’s distribution on the future distribution decays as we move further into
the future. Together, these observations imply a bound on entries of the fake-news matrix
F corresponding to J.

Lemma2. For a stationary heterogeneous-agent block, we have |Ft,s| ≤ C∆s+t for some ∆ ∈ (0, 1)
and C > 0.

Proof. See appendix B.4. ■

Here, ∆ is some scalar less than 1 and greater than all non-unit eigenvalues discussed
in definition 6. This bound on entries of F implies that they are absolutely summable,
and it follows immediately from proposition 3 that J is quasi-Toeplitz.

Proposition 4. The Jacobian J of a stationary heterogeneous-agent block is quasi-Toeplitz.

Since the algorithm in Auclert et al. (2021) for computing J in heterogeneous-agent
blocks builds the fake news matrix F as an intermediate object, it is easy to obtain the
quasi-Toeplitz symbol and correction from (15). See appendix A.2 for additional details
on the symbol.

Example: standard incomplete markets household block. Here, we suppose that the
household block is given by a standard incomplete markets model, where households
consume and save subject to idiosyncratic income risk and a borrowing constraint. The
calibration is described in appendix B.5.

In figure 3, we plot columns of two Jacobians for this model, both of which are dis-
cussed at length in Auclert et al. (2024a). First, we have M, which we briefly discussed
in section 2.1. This is the Jacobian of aggregate consumption with respect to a shock
that shifts all households’ incomes proportionally. We call the entries of M intertemporal
marginal propensities to consume (iMPCs). Second, we have the Jacobian A, giving the
response of aggregate assets to the same shock.

12If there is permanent heterogeneity, then condition 2 does not hold, but this situation can easily be
handled by separating different permanent types into different heterogeneous-agent blocks, which are in-
dividually stationary.
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Figure 3: Columns of HA Jacobians with respect to aggregate income

The quasi-Toeplitz structure of M and A is clear, as both have columns that converge
to a limiting two-sided sequence. For M, we note that there is a stronger consumption
response out of an unanticipated shock at s = 0 vs. anticipatory shocks at later s, because
households come inwithmore assets at s when they have not done anticipatory spending.
As we see in A, this anticipatory spending results in draw-down of assets prior to s.

In figure 4(a), we plot columns of the compact correction E ≡ M − T(m) of M. We see
that E is positive: missing anticipation means that spending is higher, because assets are
drawn down less ahead of time. In figure 4(b), we plot columns of the fake newsmatrixF
corresponding to M (omitting column s = 0, which is the same as column 0 of M in figure
3(a)). For all s > 0,Ft,s is positive at t = 0 and negative afterward: the effect of anticipating
future income at s is to spend more now, leaving less for the future. Importantly, entries
of F decay rapidly, illustrating lemma 2.

Following Auclert et al. (2024a), we can use these Jacobians to characterize the out-
put response to a fiscal shock, assuming that monetary policy holds real interest rates
constant. First, the intertemporal Keynesian cross is a statement of goods market clearing:
dY = dG − MdT + MdY, where dG and dT are shocks to spending and taxes, and dY
is the resulting change in equilibrium output. There is also an equivalent asset market
clearing formulation, which can be written as AdZ = dB, where dZ ≡ dY − dT after-tax
income, and dB is the change in bond supply from the fiscal shock. We will discuss how
to solve the latter, and verify determinacy and existence of solutions, in section 3.
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Figure 4: Columns of correction and fake news matrices for M

2.6 Structure theorem for expectational linear difference equations

Dynamic macroeconomic models, once linearized, are typically written as expectational
linear difference equations. In this section, we show that themappings between sequences
implied by such equations are quasi-Toeplitz.

Simple example. For a simple illustration, consider the following scalar equation:

a−1Et[xt+1] + a0xt + a1xt−1 + b0ut = 0. (19)

Here, xt is an endogenous variable determined at date t, and ut is an exogenous variable
following some stochastic process.

If a−1λ2 + a0λ + a1 has one stable root |p| < 1 and one unstable root |q| > 1, by
standard arguments there exists a unique solution for xt in terms of the endogenous state
xt−1 and expected exogenous ut+j, which can be written

xt = pxt−1 +
b0

a−1q

∞

∑
j=0

q−jEt[ut+j]. (20)

Equation (20) is a state-space law of motion for xt. To find its sequence-space counterpart,
which maps impulses to u to impulses to x, we consider an MIT shock, where us = 0 for
s < 0, and then the impulse u ≡ {u0, u1, . . .} becomes known at date 0. The mapping
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from u to x ≡ {x0, x1, . . .} implied by (20) is then

x = T(p)T(q)︸ ︷︷ ︸
≡Jx,u

u,

where T(p) and T(q) are Toeplitz matrices with symbols p(z) = ∑∞
j=0 pjzj and q(z) =

b0
a−1q ∑∞

j=0 q−jz−j, respectively. Here, T(q) maps u to the sequence given by the right term
in (20), and then T(p) accumulates that sequence to obtain x. The composite Jacobian
Jx,u, as the product of two Toeplitz matrices, is quasi-Toeplitz. Indeed, since p decays
exponentially, it is possible to show that the compact correction for Jx,u has rank one.

Why is Jx,u so close to being exactly Toeplitz, separated only by a rank-one matrix?
The intuition is that missing anticipation filters through the state variable xt−1. As a re-
sult, the correction, which captures this missing anticipation, has to have all columns be
proportional to the impulse response of {xt+h} to xt−1, i.e. proportional to {p, p2, p3, ...}.

Structure theorem for the general case. We now specify a more general, multivariate
expectational linear difference equation in canonical form

AEt[xt+1] + Bxt + Cxt−1 + Dut = 0n×1. (21)

Here, xt is an n × 1 vector of endogenous variables and ut is an m × 1 vector of exogenous
variables.13 The vast majority of models of interest to us, once linearized, may be written
in such a way. The following result generalizes the findings from our simple example
above.

Proposition 5. Suppose that the system in (21) satisfies the conditions (stated in appendix B.7) for
a unique, stable state-space solution. Then, the sequence-space Jacobians that map each exogenous
variable to each endogenous variable will be quasi-Toeplitz and the ranks of the correction matrices
will be, at most, the size of the state space.

Proof. See appendix B.6. ■

Proposition 5 implies that quasi-Toeplitzmatrices are ubiquitous. Under standard con-
ditions for the linearized solution to a dynamic macromodel, the Jacobians characterizing

13This is the same as the form in Uhlig (1995), except that for simplicity we omit expectations of ut+1
(which, since they are exogenous, can be incorporated into ut itself), and we do not require an explicit
recursive law of motion for ut.
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Figure 5: Columns of Jacobians of capital to u and TFP

the sequence-space solution are all quasi-Toeplitz.14 The only limitation is stationarity—
the solution cannot have unit roots.

Example: neoclassical growth model. To apply this result, we consider a standard neo-
classical growth model, where a representative agent allocates production f (Kt−1, Zt) to
capital and consumption Kt +Ct in each period tomaximize intertemporal utility, given by
the expected discounted sum of U(Ct). (See appendix B.8 for details.) Linearized around
the steady state, the difference equation defining this model is

fKdKt−1 −
(

1 + fK +
fKK

fK

U′

U′′

)
dKt + Et[dKt+1] =

(
fZ +

fKZ

fK

U′

U′′

)
Et[dZt+1]− fZdZt.

(22)
Letting xt ≡ dKt and ut be minus the right side of (22), this system is of the form (19), and
we conclude that the Jacobian JdK,u mapping ut to dKt is quasi-Toeplitz with a correction
of rank 1. This Jacobian is visualized in panel (a) of figure 5.

To obtain the Jacobian of capital to TFP, we multiply JdK,u by the Jacobian mapping
dZ to u, which is Toeplitz. The resulting Jacobian JdK,dZ, as the product of quasi-Toeplitz
and Toeplitz matrices, remains quasi-Toeplitz.15 This Jacobian is visualized in figure 5(b),
where we see that it resembles the asset Jacobian in figure 3(b), with depletion of capital in
anticipation of a TFP shock, and then a large increase in capital in the period of the shock,

14Indeed, the structure theorem for heterogeneous-agent blocks in the previous section can be interpreted
as one special case of this very general result, when (16)–(18) are linearized and cast into the form (21).

15Indeed, as appendix B.8 shows, its correction remains rank one, since there is still only one state variable,
capital dKt−1, and any missing anticipation of dZ feeds in through dKt−1. The same is true for the quasi-
Toeplitz matrix mapping dZ to output dY.
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which is drawn down over time.

Solving directly in the sequence space. In this section, we have built upon standard
solution methods that deliver a state-space law of motion, deriving sequence-space Jaco-
bians from these. An alternative approach is to solve entirely in the sequence space.

For instance, in our neoclassical growth model example, we can stack (19) for all t =

0, 1, . . ., defining HK to be the Toeplitzmatrixmapping dK ≡ {dK0, dK1, . . .} to the stacked
left side of (19), and−HZ to be the Toeplitzmatrixmapping dZ to the right. The sequence-
space system is then HKdK = −HZdZ, and the Jacobian JdK,dZ in figure 5(b) equals
−H−1

K HZ. The next section discusses when such an inverse H−1
K , which guarantees a

unique solution, actually exists.

3 Determinacy, existence, and invertibility

So far, we have dealt with sequence-space Jacobians J as mappings between sequences.
To solve for equilibrium, however, it is often necessary to solve a sequence-space system
Jx = y for x given y. Examples from the previous section include the asset version of
the intertemporal Keynesian cross, AdZ = dB, and the system for the neoclassical growth
model, HKdK = −HZdZ.

If J is invertible, then Jx = y has a unique solution x = J−1y. Alternatively, there
may be some y for which there is no solution x. We denote the dimension of the subspace
of such y by nonex(J) ≡ dim((range J)⊥). There may also be multiple solutions x for a
given y. We denote the dimension of the affine subspace of such solutions by indet(J) ≡
dim(null J).16 In this section, we show how to characterize these for Toeplitz and quasi-
Toeplitz J, building upon the winding number test introduced by Onatski (2006).

3.1 The winding number criterion for Toeplitz operators

Wedefined the symbol j(z) of a Toeplitz operator T(j) earlier as a complex-valued function
on the unit circle. As for any such complex function, as long as it has no zeros on the unit
circle, we can calculate its winding number.

16We say a bounded operator J is invertible if there is a bounded linear operator J−1 satisfying JJ−1 =
J−1J = I. In Hilbert space, this is true whenever J is bĳective, so if nonex(J) = 0 and indet(J) = 0, then J is
invertible.
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Definition 7. The winding number wind(j) of a continuous function j : T → C \ {0} is

wind(j) =
1

2πi

∮
j

dz
z

, (23)

which is equal to the number of times the graph of j(z) goes counterclockwise around the origin as
z goes counterclockwise along T.

It turns out that the winding number offers a simple way to determine whether a
Toeplitz operator J = T(j) is invertible—and if not, in which way it fails to be invertible.

Proposition 6. Consider a Toeplitz operator J = T(j) with symbol j(z) = ∑∞
k=−∞ jkzk such that

j(z) 6= 0 for z ∈ T. Then:

1. If wind(j) = 0, J is invertible, and its inverse J−1 is quasi-Toeplitz.

2. If wind(j) < 0, Jx = y has indeterminacy of dimension indet(J) = −wind(j), but a
solution always exists, nonex(J) = 0.

3. If wind(j) > 0, Jx = y has nonexistence of dimension nonex(J) = wind(j), but all
solutions are unique, indet(J) = 0.

Proof. See appendix C.1. ■

Remarkably, for Toeplitz operators, we never have both indeterminacy and nonexis-
tence. This is the opposite of the situation in finite-dimensional linear algebra, where
indeterminacy and nonexistence necessarily go together.

Why is J−1, if it exists, quasi-Toeplitz? Supposewe take T(j−1), where j−1 is the inverse
of j satisfying j−1 ∗ j = 1.17 This is almost an inverse, because the Toeplitz part of the
product T(j−1)T(j) is the identity. But this product will also generally have a compact
correction, and to offset this, the inverse J−1 = T(j−1) + E must include some compact
correction E as well.

Numerical implementation. See appendix A.1 for details on how to numerically imple-
ment the winding number criterion. A few key points stand out. First, if a Jacobian is
defined as the product or sum of other Jacobians, then it is best to evaluate the symbol for
those Jacobians instead: e.g. if J ≡ J1J2, then we can calculate j1(z) and j2(z) individually,
then multiply to obtain j(z). Second, the fast Fourier transform makes calculating j(z)
much more efficient. Finally, the entire Jacobian is not necessary to apply the criterion:
all we need is the sequence . . . , j−1, j0, j1, . . ., which can be obtained numerically as the
response to a very well-anticipated shock.

17The ‘1’ here refers to the two-sided sequence with 1 at position zero and 0s elsewhere.
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Simple applications of the winding number criterion. For the lag operator L, the sym-
bol is z and its graph as a function of the angle θ is cos θ + sin θ · i, which has a winding
number of 1 because it goes counterclockwise around 0 once as θ goes from 0 to 2π. For the
lead operator F, the symbol is z−1, which has graph cos θ − sin θ · i and a winding number
of −1, because it goes clockwise around 0 once. Hence L : (x0, x1, . . .) 7→ (0, x0, x1, . . .)
has less than full range, nonex(L) = 1, and F : (x0, x1, . . .) 7→ (x1, x2, . . .) has a one-
dimensional null space, indet(F) = 1.

Wemay also use this criterion to check the properties of the neoclassical growthmodel
in the previous section. HK’s symbol, from equation (22), has graph(

(1 + fK) (cos θ − 1)− fKK

fK

u′

u′′

)
+ ( fK − 1) sin θ · i.

If both f and u are increasing and concave at the steady state, the graph lies entirely to the
left of the imaginary axis. It will never wind around the origin, so its winding numberwill
be zero. As a result, HK is invertible and we have a unique rational expectations solution.
This is illustrated by the green line in figure 6.

We also consider a modification of this model, detailed more fully in appendix B.8,
where production externalities given by γ increase the returns to scale, as in Baxter and
King (1991) and Benhabib and Farmer (1994). For a high enough γ, this model suffers
from local nonexistence, as revealed by the winding number of 1 in figure 6 for the gray
dashed line, which winds once counterclockwise around the origin. This is because the
model’s dynamics are locally explosive, making it impossible to solve for a bounded im-
pulse response to most shocks.18

Relation to standard criteria for linear difference equations. Consider a version of (19)
with more leads and lags

b0ut +
n

∑
j=−m

ajEt[xt−j] = 0. (24)

A standard approach to assessing existence and uniqueness for (24) would be to write the
characteristic polynomial â(λ) ≡ an + an−1λ + . . . + a−mλm+n of the implied recurrence
for xt in the absence of shocks. Following Blanchard and Kahn (1980), there is a unique
solution to (24) if â(λ) has n stable roots (|λ| < 1). If it has fewer stable roots, there is
nonexistence; if it has more, there is indeterminacy.

18In models with endogenous labor, such as Benhabib and Farmer (1994), increasing γ from 0 often pro-
duces indeterminacy instead.
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Figure 6: Determinacy of neoclassical growth model by production externality γ

Alternatively, we can write (24) in the sequence space as T(a)x = −b0z, and apply
proposition 6. To connect to the root-counting test above, we will use the fact that for any
rational function j, the winding number wind(j) equals the number of roots inside the
unit circle minus the number of poles, counted with multiplicity.19

The symbol of T(a) is a(z) = a−mz−m + . . . + anzn. We note that a(z−1) has minus
the winding number of a(z), since z−1 goes the opposite direction of z on the unit circle.
Further, a(z−1) equals z−n â(z), whose winding number equals the number of stable roots
of â, minus n (because z−n has a pole at z = 0 of multiplicity n). Hence, wind(j) equals
zero if â has exactly n stable roots—consistent with the Blanchard-Kahn criterion above
for a unique solution. wind(j) is negative if there are fewer than n stable roots, and vice
versa—also consistent with the criteria for indeterminacy and nonexistence above.

In short, the Blanchard-Kahn and winding number tests agree, as earlier shown by
Onatski (2006). The benefit of the winding number test is that it is broader, since it applies
even when (24) has infinitely many leads and lags—and also, as we now show, to more
general systems.

19This fact actually holds whenever j is a meromorphic function on the unit disk (as guaranteed by j being
rational). This can be derived by substituting z = γ(w) into (23) and applying the argument principle.
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3.2 The quasi-Toeplitz case and genericity

As we saw earlier, the sequence-space Jacobians of heterogeneous-agent models are gen-
erally quasi-Toeplitz rather than Toeplitz. To assess whether there is a unique solution in
such cases—for instance, for the intertemporal Keynesian cross equation A(dY − dT) =

dB with quasi-Toeplitz A—we must extend the winding number criterion.
Unlike in proposition 6, in the quasi-Toeplitz case it is possible that Jx = y suffers

from both nonexistence andmultiplicity. The followingweaker version of the proposition,
however, still holds.

Proposition 7. For any quasi-Toeplitz operator J = T(j) + E where wind(j) is defined, both
nonex(J) and indet(J) are finite, and

wind(j) = nonex(J)− indet(J). (25)

Proof. See appendix C.2. ■

Now, even if the winding number is zero, (25) leaves open the possibility that nonex(J)
and indet(J) are equal and positive, in which case J is not invertible. Importantly, how-
ever, if J is invertible, then the winding number must be zero. In other words, if we use
wind(j) = 0 as a diagnostic for the existence of a unique solution, there may be false
positives (winding number is zero where there is not a unique solution), but never false
negatives (winding number is non-zero when a unique solution exists).

Ruling out false positives. There are two pieces of very good news about false positives.
First, nonexistence andmultiplicity must go hand-in-hand. If the winding number is zero
but we suspect multiplicity, then we can test for nonexistence through other means; if we
rule out nonexistence, we then also rule out multiplicity. Section 3.5 discusses how to do
this in practice. Second, proposition 6 holds generically, in the following sense.

Proposition 8. Proposition 6 holds for generic quasi-Toeplitz J = T(j) + E, i.e. on an open and
dense subset (in the operator norm) of all quasi-Toeplitz operators.

Proof. See appendix C.3. ■

For any quasi-Toeplitz J, therefore, either proposition 6 holds, or it holds for some
arbitrarily close J̃. If it holds for J, it also holds in a neighborhood of J.

Topologically, an open and dense subset fills almost all of a space, in the sense that
its complement has empty interior. The use of “generic” to mean “on an open and dense
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Figure 7: Winding number of asset Jacobian symbol a(z)

subset” is common both in mathematics and economics; for examples of the latter, see
Hurwicz and Walker (1990) and Weinstein and Yildiz (2007).

In economic applications, we have found that non-genericity is rare. For a simple ex-
ample, however, we can consider LF. From (7), we see that it is quasi-Toeplitz, equal to the
identity I plus a compact correction E that has all zeros except for the (0, 0) entry, which
is equal to −1. Its winding number is the same as I, zero, but it is clearly not invertible.
But taking, for instance, LF + εE for any ε 6= 0, including arbitrarily small ε, gives us an
invertible operator, in line with the winding number of zero.

Summary of results. We summarize our results for quasi-Toeplitz operators in the fol-
lowing proposition.

Proposition 9. Consider a quasi-Toeplitz operator J = T(j) + E where j(z) 6= 0 for z ∈ T. Then:

1. If wind(j) = 0, generically J is invertible, and if the inverse J−1 exists it is quasi-Toeplitz.

2. If wind(j) < 0, any solution to Jx = y is not unique, indet(J) > 0, but generically a
solution always exists, nonex(J) = 0.

3. If wind(j) > 0, there are y for which a solution to Jx = y does not exist, nonex(J) > 0,
but generically all solutions that do exist are unique, indet(J) = 0.

In the non-generic case, there is both non-uniqueness and non-existence: indet(J), nonex(J) > 0.

Proof. See appendix C.4. ■
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Figure 8: Winding number test and quasi-Toeplitz structure of A−1

Generically, a quasi-Toeplitz J is invertible if and only if its Toeplitz part T(j) is invert-
ible, since the same winding number test applies for both. It is worth emphasizing that
the class of quasi-Toeplitz operators is closed under inversion as well as multiplication, so
long as an inverse exists.

3.3 Application to the intertemporal Keynesian cross

We now apply our results to see whether the intertemporal Keynesian cross in asset space,
A(dY− dT) = dB, has a unique solution. To do so, we calculate thewinding number of the
symbol a(z) of A, to see whether A is invertible. We do so both for the main calibration
of the model, for which we plotted A in figure 3(b), and also an alternative calibration
discussed in appendix B.5 where the incidence of aggregate income changes is higher on
the poor than the rich. This latter case makes idiosyncratic income risk and inequality
countercyclical, since the gap between poor and rich grows in recessions.

Figure 7 plots the graphs of a(z), when evaluated around the unit circle T, in the com-
plex plane for both cases. We see that there is a winding number of 0 for the main case,
since the graph does notwrap around the origin (0, 0), but awinding number of−1 for the
countercyclical inequality case, since the graph wraps clockwise around the origin. This
echoes similar findings of indeterminacy in analytical versions of HANK models with
countercyclical risk (e.g. Ravn and Sterk 2021, Acharya and Dogra 2020, and Bilbiie 2024.)

Figure 8(a) plots the winding number for a range of calibrations, where a negative ζ
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corresponds to countercyclical risk.20 The winding-number test gives a precise answer for
the level of ζ at which the model shifts from indeterminacy to determinacy: ζ = −0.272.

An alternative test is to plot the ratio of the smallest and second-smallest singular val-
ues of a T × T truncation of the Toeplitz part T(a) of A. When T(a) is not invertible, the
smallest singular value sT should be close to zero, while the second-smallest sT−1 is not—
and the gap should become more pronounced as T increases.21 When there is determi-
nacy, on the other hand, the ratio should be close to 1. Figure 8(a) compares sT/sT−1 − 1 to
the winding number for both T = 500 and T = 1500. Especially for higher T, this ratio test
roughly lines up with the winding number, but it is less precise and also computationally
much more costly.

Finally, figure 8(b) plots columns of the compact correction A−1 − T(a−1) of A−1 for
our baseline calibration with ζ = 0. We see that not only is A−1 quasi-Toeplitz, but the
distance from Toeplitz is also quite small.

3.4 Characterizing indeterminacy or nonexistence

Suppose that the winding number test tells us that our quasi-Toeplitz system Jx = y
suffers from indeterminacy or nonexistence. It is natural to askwhat this indeterminacy or
nonexistence looks like: for what x dowe have Jx = 0, and for what y is there no solution?

Figure 9(a) plots the “self-fulfilling” output changes dY that satisfy AdY = 0, for var-
ious levels of ζ where there is indeterminacy, normalizing dY0 to 1. In the language of
the goods-market Intertemporal Keynesian Cross, these dY satisfy dY = MdY: they are
increases in output that generate an exactly equal amount of consumption demand.

Here, these dY are roughly exponential: higher future dYt+h, by lowering anticipated
idiosyncratic risk, drives an even larger increase in spending dYt at date t. When we are
close to the indeterminacy threshold, as with ζ = −0.3, the path is extremely persistent: to
sustain an increase in output today, we need an anticipated increase in output 30% as large,
even 1000 quarters in the future. Indeed, if we keep increasing ζ to the thresholdwhere the
model becomes determinate, persistence approaches 1, as an increase in spending needs
to be almost permanent to be self-fulfilling. For more negative ζ, on the other hand, the
path features far less persistence.

20In our parametrization, explained in appendix B.5, ζ is the sensitivity of the cross-sectional standard
deviation of labor income to log changes in aggregate labor.

21Section 4.6 of Böttcher and Silbermann (2012) puts this on formal footing, showing that as T → ∞, the
set of singular values of the truncated matrix approaches the true set of singular values for the Toeplitz
operator. We can also perform this “SVD ratio” test directly on the quasi-Toeplitz A, and the results are
similar but somewhat less accurate for low T.
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Figure 9: Indeterminacy and nonexistence examples in the IKC model

Figure 9(b) tackles a case with nonexistence. If we rearrange the goods-market in-
tertemporal Keynesian cross (briefly discussed in section 2.5) to isolate dY, we get (I −
M)dY = dG − MdT. It is tempting to solve this by inverting I − M, but as Auclert et
al. (2024a) point out, I − M is not invertible, because its range only includes sequences
with net present value zero. Applying the winding number test confirms this: the sym-
bol 1 − m(z) for our baseline calibration has a winding number of 1. We can visualize the
nonexistence here by finding the sequence to which the range of I−M is orthogonal. This
is simply q ≡ {1, (1 + r)−1, (1 + r)−2, . . .}, as plotted in figure 9(b). For a solution to the
goods-market intertemporal Keynesian cross to exist, the right side dG − MdT must be
orthogonal to dYnonex, i.e. it must have net present value zero. Fortunately, this is guaran-
teed whenever government debt does not explode.

In figure 9(a), we obtain self-fulfilling output by numerically looking for a sequence
that is in null A. Concretely, we find the right singular vector for the smallest singu-
lar value of a truncated A.22 Similarly, in figure 9(b), we look for a sequence that is in
(range I−M)⊥ by finding the left singular vector for the smallest singular value of a trun-
cated I − M.

22Interestingly, if we ask for the left singular vector for the smallest singular value of a truncated A, we
get an explosive sequence that is largest near the truncation boundary T. This is because the true, infinite-
dimensional A has full range, so if anything is missing from the truncated A’s range, it must be closely tied
to truncation.
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3.5 Non-genericity

In proposition 9, the winding number test applies generically for quasi-Toeplitz operators,
meaning that it gives the correct answer on an open and dense subset of all such operators.

Topologically, non-generic operators are rare, but it is possible that the economic struc-
ture of a problem makes it non-generic. We know of one main example, which is the
following. Suppose that in the previous section, we are in the case with indeterminacy,
where the winding number of a(z) is−1. In this case, it is possible to show that the wind-
ing number of 1 − m(z) is 0. This would suggest that I − M is invertible, but its range
still has only sequences with net present value zero, so it is clearly not invertible. This is a
non-generic case where the winding number test fails.

Suppose we were not aware of this issue, and naively concluded from the winding
number test that I − M was invertible when ζ = −0.4. How could we detect our mistake?
As proposition 9 shows, in the non-generic case, we always have both indeterminacy and
nonexistence. We can test for the latter numerically by feeding in arbitrary y that decays
to zero and seeing if (I − M)x = y has any solution—which it will not unless y happens
to lie in the right subspace. To implement this, we choose 100 sequences yt ≡ ρt

1 − 0.5 · ρt
2,

with randomdraws of ρ1, ρ2 ∈ [0.85, 0.95] for each sequence. Solving the truncated system
with T = 1000, we obtain x with entries of at least 2000 on every draw, and over 200,000 on
some draws—many orders of magnitude larger than the y, and economically unrealistic.
This indicates that there is not a true solution to (I − M)x = y for most y, revealing that
I − M is not invertible.23

We can always sharpen this analysis with a higher T; for instance, with T = 2000, the
same exercise finds “solutions” x with entries of almost 1 billion.24

How can it be that I − M non-generic, lying outside an open and dense set that covers
almost the entire space of operators? The reason is that the present-value household bud-
get constraint restricts M to have a very special structure, where if q ≡ (1, (1 + r)−1, (1 +
r)−2, . . ., then q′(I − M) = 0. Nearly all “nearby” M, in the sense of the operator norm,
are generic, but these do not satisfy q′(I − M) = 0 and are therefore not economically
valid. This echoes the observation by Sims (2007) that theoretically motivated constraints
may make a model non-generic.

In practice, we have found that solving models in the goods space, where such in-
tertemporal budget constraints are present, can lead to non-genericity in other cases as

23Since finite-dimensional matrices are generically invertible, the truncated version of I − M usually will
be invertible even if the infinite-dimensional I − M operator features non-existence. This makes this type of
procedure necessary.

24As in section 3.3, we can also look at the smallest singular value and see if it is close to zero.
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well. We have not, however, found any practical example of non-genericity when a model
is solved in the asset space. It is therefore best to solve at least partly in the asset space—
imposing asset market clearing, and obtaining goods market clearing via Walras’s law.25

Irrespective of the approach taken to solve themodel, the key fact about non-genericity
is that it implies both indeterminacy and nonexistence. This allows us to test indetermi-
nacy, if we areworried about non-genericity, by asking the easier question of nonexistence.

3.6 Application to Taylor principle with heterogeneous agents

We now extend the model of section 3.3 to allow for a time-varying real interest rate, con-
sistent with a NewKeynesian Phillips curve for inflation and a Taylor rule for the nominal
interest rate. To do so, we need to set up a larger sequence-space system.

For this example, we assume that the Phillips curve takes the form πt = κdYt + βEπt+1,
which we can write in sequence space as π = KdY, where K is upper-triangular and has
entries Kt,s = βs−tκ for s ≥ t. We also assume that the Taylor rule is it = r + ϕπt, where
r is the steady-state real interest rate, and therefore drt = ϕπt − Eπt+1, which can be
written in sequence space as dr = (ϕI − F)π. Finally, as in Auclert, Rognlie and Straub
(2025), we assume that the fiscal rule adjusts taxes Tt to target constant debt inclusive of
interest (1 + rt)Bt going into the next period. In the absence of any shocks to government
spending, this implies that (1 + r)dBt = −Bdrt, and dTt = −dBt.

Defining Ar to be the Jacobian of aggregate assets with respect to the real interest rate,
asset-market clearing implies that A(dY − dT) + Ardr = dB, which using dTt = −dBt

can be rewritten as AdY + Ardr = (I − A)dB. Finally, using dBt = −(1 + r)−1Bdrt, this
becomes

0 = AdY +
(

Ar + (1 + r)−1B(I − A)
)

dr

=
(

A +
(

Ar + (1 + r)−1B(I − A)
)
(ϕI − F)K

)
dY (26)

where in the second line we substitute dr = (ϕI − F)π = (ϕI − F)KdY.

Winding number test and determinacy. Our question now is determinacy: for a given
Taylor rule coefficient ϕ, is dY = 0 the only solution to (26)?

To do so, we apply the winding number test to the operator multiplying dY in (26),
25As Auclert and Rognlie (2020) point out, it is also dangerous to solve in goods space in the steady state,

since goods-market clearing can be satisfied without asset market clearing when r = 0.
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which we denote by Θ. This has symbol

θ(z) = a(z) +
(

ar(z) + (1 + r)−1B(1 − a(z))
)
(ϕ − z−1)κ(1 − βz−1)−1 (27)

where a(z) and ar(z) are the symbols of A and Ar, z−1 is the symbol of F, and we have
substituted k(z) = κ(1 + βz−1 + . . .) = κ(1 − βz−1)−1 for the symbol of K. In going from
(26) to (27), we use the important fact from proposition 1 that the symbol of a product is
the product of the symbols.

As we vary the Taylor coefficient ϕ or the slope κ of the Phillips curve, the only part
of (27) that changes is the factor (ϕ − z−1)κ in the second term. As a result, the winding
number test can be implemented extremely efficiently across different ϕ and κ, since we
can precalculate everything except (ϕ − z−1)κ for our sample points z around the unit
circle. Figure 10 shows the results in (ϕ, κ) space.

If the Phillips curve has slope κ = 0, then ϕ is irrelevant and we always have determi-
nacy; in this case, θ(z) = a(z) in (27) and we are back at our original case of a constant real
rate rule. For high κ, on the other hand, the threshold for determinacy approaches the tra-
ditional Taylor principle ϕ = 1.26 In between, the Taylor rule threshold ϕ is strictly lower
than 1, though often only by a small amount. For instance, at κ = 0.0062 (the quarterly
Phillips curve slope with respect to unemployment from Hazell, Herreno, Nakamura and
Steinsson 2022), the determinacy threshold in figure 10 is ϕ = 0.96.

3.7 Extending to the block case

Up to this point we have considered scalar systems, where we solve Jx = y for a single
unknown sequence x ∈ ℓ2, given a single target sequence y ∈ ℓ2. In practice, however, we
often need to solve for multiple unknown sequences to hit an equal number n of targets.
We can represent such cases with a block system.

In a block system Jx = y, x and y are sequences of vectors rather than scalars, and the
Jacobian J is a map between sequences of vectors. Formally, we say that x and y are in the
space ℓ2(Rn), rather than the previous ℓ2(R), and J is an operator on ℓ2(Rn). An entry Jt,s

of J is now an n × n matrix, representing the effect of the vector xs on the vector yt.
Very little changes in the process of accommodating the block case. Definitions 1–3 for

Toeplitz operators, quasi-Toeplitz operators, and their symbols immediately generalize.

Definition 8. We say a linear operator J on ℓ2(Rn) is block Toeplitz T(j) if its matrix has the
26This can be seen from (27) as follows. As κ → ∞, the right term dominates. One can numerically calcu-

late that the winding number of
(
ar(z) + (1 + r)−1B(1 − a(z))

)
(1 − βz−1)−1 is zero. In the limit, therefore,

wind θ equals the winding number of ϕ − z−1, which is 0 for ϕ > 1 and −1 for ϕ < 1.
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Figure 10: Regions of indeterminacy and determinacy for (26) in (ϕ, κ) space

form (4)with constant entries jk on each diagonal, where the jk are matrices on Rn and are absolutely
summable (i.e. ∑∞

k=−∞ |jk| < ∞, with |jk| being the matrix norm of jk). The symbol of T(j) is the
function j : T → Cn given by j(z) ≡ ∑∞

k=−∞ jkzk.
We say that J = T(j) + E is block quasi-Toeplitz if T(j) is block Toeplitz and E is a compact

operator on ℓ2(Rn).

Proposition 10. Lemma 1 and propositions 1–3 hold with “Toeplitz” and “quasi-Toeplitz” re-
placed by “block Toeplitz” and “block quasi-Toeplitz”.

Proof. See appendix C.5 ■

We can think of a block Toeplitz operator T(j) on ℓ2(Rn) as consisting of n × n scalar
Toeplitz operators T(ju,v), each of which maps sequences in some dimension u to se-
quences in some dimension v of Rn. The same is true for block quasi-Toeplitz.

Winding number criterion. The winding number criterion for determinacy and exis-
tence also generalizes to the block case, with two important details. First, since the symbol
is now matrix-valued, we take the winding number of its determinant.

Second, the exact winding number criterion for Toeplitz operators in proposition 6
does not extend to the block Toeplitz case. Instead, with blocks, we have the same criterion
as for quasi-Toeplitz.

Proposition 11. Propositions 7–9 hold for “quasi-Toeplitz” replaced by “block quasi-Toeplitz”,
and wind(j) replaced by wind(det j).
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Proof. See appendix C.5. ■

Thus the winding number test holds for generic block quasi-Toeplitz J (as previously
derived by Onatski 2006 for the block Toeplitz case), and in non-generic cases, we have
both indeterminacy and nonexistence.

Appendix B.7 shows that for multidimensional linear difference equations (21), the
winding number test is equivalent to the standard root-counting criterion for existence
and uniqueness.

Application to Taylor principle. In the last section, we used substitutions to reduce our
model to a single, somewhat complicated scalar Toeplitz system (26) in dY. Alternatively,
we can avoid these substitutions and write the system in [dY, dr, π] as0

0
0

 =

 A Ar + (1 + r)−1B(I − A) 0
0 I −(ϕI − F)

−K 0 I


dY

dr
π

 (28)

The block symbol corresponding to the matrix in (28) is a(z) ar(z) + (1 + r)−1B(1 − a(z)) 0
0 1 −(ϕ − z−1)

−k(z) 0 1

 (29)

and we can then apply the winding number test to the determinant of (29). This delivers
the same results as in the previous section.27

4 Improving on truncation

4.1 Truncation and spurious missing anticipation

Themost commonway to use sequence-space Jacobians in practice is to truncate them and
work with the resulting finite-dimensional matrices. For instance, we replace the infinite-
dimensional system Jx = y with a finite-dimensional version JT,TxT = yT. In the math-
ematical literature, this is called the finite section method, and there are results (Böttcher
and Silbermann 2012), summarized in the following proposition, showing convergence to
the true solution as T → ∞.

27Indeed, in this case, it is easy to show analytically that the determinant of (29) is exactly θ(z) from (27).
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Proposition 12. For a system Jx = y with x, y ∈ ℓ2(Rn), define JT,T to be the truncated T × T
submatrix of J, yT to be the length-T truncation of y, and x̂T ≡ J−1

T yT to be the solution of the
truncated system. If J is quasi-Toeplitz (n = 1), then x̂T converges to the true solution x = J−1y
as T → ∞, assuming J is invertible. This is generically also true when J is block quasi-Toeplitz
(n > 1).

Proof. In appendix D.1. ■

In short, if the winding number test from section 3 tells us that Jx = y always has
a unique solution, so that J is invertible, then for large enough T, the truncated system
will get arbitrarily close to the correct answer. This is encouraging, and suggests that
truncation is a reasonable approach.

Spurious missing anticipation. Still, for any finite T, truncation introduces distortions.
Conceptually, these distortions are the mirror image of the “missing anticipation” dis-
cussed in section 2. By truncating the system, we assume that all agents in the model
expect xt and yt to be zero for t ≥ T. If the agents are forward-looking, the x̂T we com-
pute is incorrectly missing the anticipation of both the shock itself and any endogenous
propagation. Unlike the missing anticipation discussed earlier—which was part of the
economic environment, with shocks only realized at t = 0—this missing anticipation is
purely an artifact of truncating the system, and we call it spurious missing anticipation.

For a simple example, consider FL, the product of the lead and lag operators. Without
truncation, this is the identity (FL = I), but the truncated product is FTLT 6= IT:

. . . . . . . . .

. . . 0 1 0

. . . 0 0 1
0 0 0




. . . . . . . . .
. . . 0 0 0
. . . 1 0 0

0 1 0

 =


. . . . . . . . .
. . . 1 0 0
. . . 0 1 0

0 0 0

 . (30)

Here, the final entry on the diagonal is a zero instead of a one. This is reminiscent of
LF in (7), but with the missing entry in the opposite corner of the matrix. This indicates
two important properties of spurious missing anticipation: it results from taking leads of
lags, and it is confined to be near the truncation boundary at (T, T), just as the compact
correction is near (0, 0).
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Figure 11: Approximation errors for output response to deficit-financed tax cut

Decomposing the missing anticipation. To better understand the error introduced by
spurious missing anticipation, we can partition the infinite system into blocks,

Jx =

[
JT,T JT,+

J+,T J+,+

] [
xT

x+

]
=

[
yT

y+

]
= y, (31)

where as before the subscript T denotes truncation to length T, and now + denotes the
remaining part from T to ∞. We can then write the error in the truncated solution x̂T =

J−1
T,TyT as the sum of “endogenous” error ϵn

T and “exogenous” error ϵx
T,

x̂T − xT = ϵn
T + ϵx

T = ϵT, (32)

where endogenous error comes from failing to anticipate the future path x+ of the solu-
tion, and exogenous error comes from failing to anticipate y+.

Exogenous error can be written as simply ϵx
T = −[J−1]T,+y+, where J−1 is the true

inverse of J. Endogenous error is somewhat more complex, and can be written as ϵn
T =

[J−1]T,+J+,T x̂T. Here, J+,T x̂T captures how the truncated x̂T has a persistent effect on future
y, and [J−1]T,+ is the endogenous change in xT that is necessary to offset this.

Figure 11 shows this error decomposition as a function of truncation length for the
intertemporal Keynesian cross equation AdZ = dB, in response to a deficit-financed tax
cut. Here, as in the rest of this section, we use an alternative calibration of the model that
features more endogenous persistence in order to test the limits of truncation. All details
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of the calibration and shock are discussed in appendix B.5.
We see that for short T, endogenous and exogenous errors are large and have similar

magnitudes, and indeed partly cancel each other. But for longer T, the exogenous error
falls to minimal levels as the original fiscal shock recedes, while the endogenous error
falls more slowly and eventually drives the entire approximation error. This is common
in models with strong internal persistence.

Practical difficulties with truncation. We know from proposition 12 that the truncated
solution eventually approaches the correct one—but as figure 11 reveals, a long truncation
horizon T can be necessary to obtain an accurate enough answer. Solving the systemwith
such a T can be costly in its own right, especially in the block case. It can be even costlier to
identify what T is high enough in the first place, since this generally involves solving the
system with different T and verifying that changes in T make little difference (see Auclert
et al. 2021).

Another issue is that we often must multiply several Jacobians when setting up our
system, like in (26), prior to solving it. When performedwith truncatedmatrices, this pro-
cess introduces additional error from missing anticipation, and although choosing high
enough T usually alleviates any problems, there is no analog here of the theoretical guar-
antee from proposition 12. Indeed, there are examples, like (30), where this process fails
catastrophically, and the Jacobian calculated via truncation is not invertible even when
the true Jacobian is.

Both these issues motivate us to seek alternatives to simple truncated matrix opera-
tions, which we tackle in the next two subsections.

4.2 Iteration using approximate inverses

With a truncated system JT,TxT = yT, we candirectly obtain the solution x̂T using standard
methods. The cost of doing this grows cubically in T, making it difficult to use large T.

Alternatively, we can use iterative methods. When solving iteratively for x̂T, we do not
explicitly perform Gaussian elimination on JT,T. Instead, we only need to evaluate JT,T on
sequences x̂T. This has a far lower cost that grows quadratically in T, making it practical
to choose high enough T that truncation error is avoided. To be able to iterate, however,
we need an approximate inverse PT,T ≈ J−1

T,T, which in the context of iterative methods is
called a preconditioner.

Fortunately, for quasi-Toeplitz J = T(j) + E, there is a natural choice of P: the Toeplitz
part T(j−1) of the inverse. This is correct modulo a compact operator, and very cheap to
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calculate, since the symbol satisfies j−1(z) = j(z)−1. (See appendix A.3 for details.)
If desired, we can augment P as follows. We take the inverse of J2T̃,2T̃ for some small

T̃, such that the inverse is inexpensive to compute, and find the non-Toeplitz part of the
first T̃ × T̃ submatrix of this inverse. We can use this as an approximation to the compact
correction of the true inverse, and add it to P.

Given either preconditioner P, we can then iterate over x̂T in two ways:

• Simple iteration: starting with initial guess x̂0
T = 0, we iteratively evaluate

x̂l
T = x̂l−1

T + PT,T(ŷT − JT,T x̂l
T) (33)

to obtain a sequence of guesses x̂l
T, until ŷT − JT,T x̂l

T is sufficiently close to zero. This
uses the approximate inverse PT,T to correct the error from the previous iteration.

• Generalized minimal residual method (GMRES): defining the lth Krylov subspace to be
the span of (PT,TJT,T)

mPT,TyT for m = 0, . . . , l − 1, the lth guess x̂l
T is chosen from

this subspace to minimize the norm of the residual yT − JT,T x̂l
T, again continuing

until the residual is sufficiently close to zero.

GMRES is a standard iterative method used to solve large-scale linear models, and is
widely implemented (Saad 2003). It works especially well when the preconditioned ma-
trix PT,TJT,T is close to the identity, at least up to some error with rank that is not too high.
This is plausible in our case, since the difference between PJ and I is a compact operator,
and compact operators can be uniformly approximated by finite-rank matrices.28

GMRES is always at least as good as simple iteration, since the lth iterate in (33) is
contained in the lth Krylov subspace. In practice, GMRES can be vastly more efficient.

Application to fiscal shock. We now apply these iterative methods to solve for impulse
responses to the fiscal shock introduced in the previous section. We use both simple iter-
ation and GMRES, and try three preconditioners P: first, the Toeplitz part of the symbol
T(j−1) on its own, and then also adding approximate compact corrections with T̃ = 100
and T̃ = 200. In all these strategies, we solve for a sequence of length T = 3000.

Table 1 shows the number of iterations in each case that are necessary to obtain a solu-
tion with residual under 10−8. We see convergence is reasonably quick in all cases, taking
a maximum of 10 iterations with simple iteration and a pure-Toeplitz preconditioner, and

28Of course, there is also an error in PT,TJT,T caused by truncation, but with this method it is cheap to
choose T high enough that this error is minimal.
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Iterative strategy
Preconditioner Simple GMRES
Toeplitz part of inverse 10 5
With compact correction (T̃ = 200) 6 4
With compact correction (T̃ = 400) 4 4

Table 1: Number of iterations until max absolute residual < 10−8

falling to only 4 iterationswhen the preconditioner is augmentedwith 200-by-200 compact
correction.

The performance of simple iteration is more sensitive to including the compact correc-
tion in P: it improves from 10 to 4 iterations, while GMRES takes amaximumof 5 iterations
even with the pure-Toeplitz P, and falls to 4 with the corrected P. This is because GMRES
can be very effective even when PJ differs from the identity, so long as the error has low
rank, whereas simple iteration requires PJ to be reasonably close to the identity. Indeed,
in more complex models, simple iteration can sometimes fail to converge at all.

4.3 Directly using quasi-Toeplitz structure

In the last section, we exploited quasi-Toeplitz structure as part of an iterative strategy. We
now discuss how this structure can be used directly, to avoid the cost of storing and doing
computations with large truncated matrices. In this part we rely heavily on the insights
of Bini et al. (2019).

There are two key observations. First, it is cheap to work with Toeplitz operators. For
instance, if we truncate J = T(j) + E to a horizon of T, then for the Toeplitz part T(j) we
need only store the length 2T − 1 sequence j−(T−1), . . . , j0, . . . , jT−1. Especially when T is
large, this is far smaller than a T × T matrix. Applying this Toeplitz part to a sequence
is also cheap, and can be done in O(T log T) time with the fast Fourier transform (see
appendix A.3), rather than the usual O(T2) for matrix-vector multiplication.

Of course, this is not useful if we still need toworkwith a dense T × T correctionmatrix
ET,T. This brings us to the second key observation. Since E is compact, it can be arbitrarily
well-approximated by finite rank operators—and in practice, this approximation can often
be good with surprisingly low rank. Hence, rather than working with a T × T truncated
matrix ET,T, we can work with a low-rank factorization ET,T ≈ UT,rV′

T,r, where UT,r and
VT,r have only r � T columns each. Storing this factorization requires only 2Tr elements
rather than T2, and applying it to a sequence has cost O(Tr) rather than O(T2). Further,
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Figure 12: Error in evaluating AdY for compressed correction matrices

since Et,s decays as t, s move away from (0, 0), we can potentially choose a lower T.
Figure 12 illustrates this second point for the same heterogeneous-agent model as in

the last section. It plots the error in applying the asset Jacobian A to a geometrically-
decaying income shock dY ≡ {1, 0.9, 0.92, . . .}, when A is represented as the sum of a
precise Toeplitz part (truncated to T = 3000) and an approximate correction. The hori-
zontal axis gives the T to which the correction is truncated, and each line corresponds to
approximation with a different rank r.29

In this example, we see that a very high T is needed for accuracy. This is because
the model has been intentionally chosen to feature very high internal persistence. (See
appendix B.5.) Importantly, however, the rank can be far lower than the truncation length
T. For instance, when the correction is truncated to T = 2000, a rank-6 approximation
delivers error indistinguishable from using the full T × T matrix.

To summarize, together with the iterative methods in the previous section, we now
have a recipe for much more efficient sequence-space operations, which are feasible even
when T is high. First, rather than using direct methods to solve a sequence-space system,
with cost O(T3), we can do just a few iterations, each of which requires a matrix-vector
product with cost of only O(T2). Second, by splitting Jacobians into Toeplitz and compact
parts, we can reduce the latter cost further to just O(T(log T + r)), for some low rank r.

29Here, we use the r leading singular values from a direct singular value decomposition (SVD) to construct
the low-rank approximation. To avoid the cost of a full SVD, one can use Lanczos iteration. (See Bini et al.
2019.)

39



5 Iterative solutions for large-scale models

To demonstrate the effectiveness of iterative methods in handling large systems, we now
consider a many-country generalization of the intertemporal Keynesian cross model we
have studied so far, in which countries purchase part of their consumption baskets from
each other. A related model is derived in Aggarwal, Auclert, Rognlie and Straub (2023),
which here we extend to a large, asymmetric trade network.

Description of model. Here, the linearized goods-market clearing condition in country
i is

dYi = ∑
j

dCi,j + dGi, (34)

where dYi and dGi are the sequences of GDP and government consumption changes in
country i, and dCi,j is the sequence containing the amount of country i’s good consumed
by country j in each period.

We assume a fixed fraction Πi,j of country j’s total consumption is imported from coun-
try i (i.e. dCi,j = Πi,jdCj). We also assume that the monetary authority in each country
targets a constant real interest rate r. Country j’s total consumption dCj is then deter-
mined by its households’ total post-tax income dYj − dTj via the domestic intertemporal
MPC matrix Mj, which implies the relationship

dYi = ∑
j

Πi,jMj(dYj − dTj) + dGi, (35)

which is the international generalization of the intertemporal Keynesian cross. We as-
sume that fiscal policy dTi, dGi in each country is chosen exogenously, consistent with
each government’s intertemporal budget constraint.

To calibrate a realistic trade network, we use data from the BACI database of bilateral
trade flows.30 The matrix of trade flows, normalized by GDP, can be transformed to yield
our calibration of Π for the 177 countries in our sample. Lacking information on intertem-
poral MPCs for each country, we set all Mj equal to the M in our main calibration.

We then assume the the US implements same deficit-financed tax cut shock as in the
previous section, and study its propagation in both the US and the rest of the world.

30A more detailed description of this dataset is provided in Gaulier and Zignago (2010).
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Figure 13: Time taken to solve international IKC model

Computation. Equation (35) implies that output in each country depends on output in
every other country, thanks to consumption-income feedback. It is therefore necessary
to solve for output in each country simultaneously.31 With 177 countries and a trunca-
tion horizon of T = 1000, the sequence-space system we must solve is of size 177, 000 ×
177, 000, which is far too large for a direct solution.

Instead, we apply the methods from the previous section. Concretely, we stack (35)
across countries, replace it for one country by the world asset-market clearing condition,
and apply GMRES with the Toeplitz part of the inverse as the preconditioner, following
the method in section 4.2. This strategy proves to be immensely successful, taking 12
iterations and fewer than 5 seconds on a laptop to converge.

Figure 13(a) compares the performance of this iterative method to the conventional,
direct method of solving a truncated linear system, for calibrations with varying numbers
of countries.32 Before we even hit 30 countries, the direct method takes almost a minute,
while the iterative method takes less than a second. The gap widens from there.

The gap is even larger when we compare to state-space methods à la Reiter (2009),
which solve for a recursive law of motion in the distribution. We depict the estimated
time necessary to solve the same system using these methods in the “state space” line
of figure 13(b).33 Models that take years to solve in the state space take seconds in the

31In Aggarwal et al. (2023), it was possible to exploit symmetry to decouple (35) between countries. With
our asymmetric calibration of Π taken from the data, we are not aware of any similar simplification.

32For this exercise, we randomly generate Πs with some home bias.
33We estimate the time needed for a state-space solution by taking the size of the state-space system im-

plied by our model with N countries and timing a Schur decomposition for a matrix of that dimension,
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Figure 14: Response to deficit-financed tax shock in the US

sequence space. This illustrates the combined power of the sequence space, which reduces
the complexity of heterogeneous-agent models to a collection of sequences, and iterative
methods for sequence-space solutions.

The global effects of a shock to the US. Figure 14(b) plots the resulting changes in out-
put for a few key countries. The ficsal shock in the US is plotted on the left in figure 14(a).

On impact, all countries experience a boom, but the size of the boom in each country
depends on how tightly linked it is with the US. For countries like Canada and Mexico,
which are among the US’s larger trade partners, there is a larger boom than in countries
that trade less with the US. Canada and Mexico, unlike the US’s more distant trade part-
ners, also experience a hangover after the initial boom, as economic activity in the US itself
slows once taxes are raised to start paying down the debt. Appendix E.1 visualizes output
responses around the world both on impact and after 20 quarters.

6 Conclusion

We have shown that sequence-space Jacobians have a special quasi-Toeplitz structure. This
structure delivers a simple test for existence and uniqueness of solutions, and also opens
the door to more efficient and accurate computation, which allows us to solve sequence-

which captures the key bottleneck step—separating into stable and unstable eigensystems—in the state-
space method. For N where it is no longer feasible to perform the Schur decomposition, we extrapolate
using its cubic complexity.
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space systems of unprecedented size.
Going forward, a top priority will be further exploration of these new computational

methods. It may be possible to adapt them to solve other models with many aggregate
variables in the sequence space, such as spatialmodels of trade ormigration, or heterogeneous-
householdmodels with an input-output structure as in Schaab and Tan (2023). Separately,
even with the improvements in section 4.3, there is also still a great deal of redundancy
in our representation of Jacobians. A more parsimonious representation, perhaps with
rational functions, may make it possible to solve even larger models.
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A Practical computation

In this appendix we discuss practical computation of the winding number and symbol.
For quasi-Toeplitz computational questions not covered here, a useful reference is Bini et
al. (2019).

A.1 Winding number

To numerically calculate the winding number wind(j) of the symbol j(z) associated with
some quasi-Toeplitz Jacobian J, we follow two basic steps:

• Step 1. Evaluate j(z) at all roots of unity zk ≡ e2πik/K, for some large even K (as a
rule of thumb, usually 5000–10,000 or more).

• Step 2. Test howmany times the piecewise linear path formedby j(z0), j(z1), . . . , j(zK−1), j(z0)

winds counterclockwise around j.

In the block casewhere the symbol j(z) is matrix-valued, we take the determinant det j(zk)

at each zk at the end of step 1, then calculate how many times the piecewise path formed
by det j(zk) winds in step 2.

Belowwe discuss details of implementing both steps.A-1 Code is available at https://
github.com/shade-econ/nber-workshop-2025/blob/main/notebooks/winding_number.
py. Before continuing, it is worth making a few additional points. First, a full Jacobian is
not necessary to implement this test. In principle, we can get the coefficients of j(z) by nu-
merically finding the response to a sufficiently well-anticipated shock. Second, to obtain
the symbol for a heterogeneous-agent block from the Jacobian, see appendix A.2.

Step 1 details. A quasi-Toeplitz J may be specified in many ways. If it is defined by
multiplying, inverting, or linearly combining other quasi-Toeplitz Jacobians, it is best to
perform step 1 individually for these individual Jacobians, then performing the corre-
sponding operations on the results. For instance, if J = (J1J2 − 4J3)

−1J4, then j(z) =

(j1(z)j2(z) − 4j3(z))−1 j4(z), and we can evaluate j at all zk by evaluating j1, j2, j3, j4 and
then calculating (j1(zk)j2(zk)− 4j3(zk))

−1 j4(z). (This holds identically in the block case,
with matrix rather than scalar multiplication and inversion.) See section 3.6 for an exam-
ple of this.

For a Jacobian that cannot be further broken down in this way, we proceed as follows.
We assume that we have some truncated representation j(z) = j−(T−1)z−(T−1) + . . .+ j0 +

A-1These are fairly standard computations, not original to this paper; we include them here for reference.

A-1
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. . .+ jT−1zT−1, and also assume that K is even and K ≥ 2T. We observe that ĵ(z) ≡ zK/2 j(z)
is then a polynomial of degree less than K and can be written in the form ĵ(z) = ĵ0 + ĵ1z +
. . . + ĵK−1zK−1. Applying the fast Fourier transform (FFT) to the sequence of K coeffi-
cients ĵ0, . . . , ĵK−1 gives the sequence ĵ(z0), ĵ(zK−1), . . . , ĵ(z1) from evaluating the polyno-
mial ĵ(z) at clockwise Kth roots of unity. Since zK/2

k = (−1)k, we have j(zk) = (−1)k ĵ(zk),
and can obtain j(z0), j(z1), . . . , j(zK−1), j(z0) by multiplying ĵ(z0), ĵ(zK−1), . . . , ĵ(z1) by the
sequence 1,−1, 1,−1, . . ., adding ĵ(z0) at the end, and reversing the sequence.

To summarize, the algorithm is:

• Inputs: sequence j−(T−1), . . . , jT−1 for symbol; even K ≥ 2T

• Initialize sequence ĵ0, . . . , ĵK−1 to zero

• Set ĵk+K/2 ≡ jk for k = −(T − 1), . . . , T − 1

• Take FFT of sequence ĵ0, . . . , ĵK−1, store output as x0, . . . , xK−1

• Return: sequence x0,−xK−1, xK−2, . . . ,−x1, x0, which gives values of symbol j on
counterclockwise Kth roots of unity.

For the block case where the input sequence j−(T−1), . . . , jT−1 are n× n matrices, we do the
above for each pair of indices n1, n2 ∈ {1, . . . , n}, returning a sequence of n × n matrices,
and then taking the determinant of each matrix to reduce to a scalar sequence.

Because the FFT is efficient, with costO(T log T), the above algorithm is generally quite
fast. It is possible to further economize on the FFT and any other operations (including the
determinant, or e.g. multiplication if we are composing Jacobians) by taking advantage of
conjugate symmetry: since zk = z∗K−k, where ∗ denotes the complex conjugate, we have
j(zK−k) = j(zk)

∗ and det j(zK−k) = (det j(zk))
∗ as well, making it unnecessary to compute

these separately.

Step 2 details. Once we have our sample values j(z0), j(z1), . . . , j(zK−1), j(z0) (or their
determinants in the block case), which we will denote by x0 + iy0, . . . , xK + iyK, we need
to see howmany times the closed piecewise linear path formed by the coordinates (xk, yk)

winds counterclockwise around (0, 0). It is often useful to assess this visually.
There aremanyways, however, to automate this evaluation. One is to count howmany

times the path crosses the ray (0, 0) → (∞, 0) from below (counting crossings from above
negatively). We summarize an implementation of this as follows:

• Input: Closed path (x0, y0), (x1, y1), . . . , (xK−1, yK−1), (xK, yK)

A-2



• Initialize w ≡ 0, s0 ≡ 1y0≥0

• For k = 1, . . . , K:

– Calculate sk ≡ 1yk≥0. If sk = sk−1, then there is not a crossing. If sk 6= sk−1,
evaluate the following three cases:

∗ If xk, xk−1 > 0, then there is a crossing. Add sk − sk−1 to w.
∗ If xk, xk−1 ≤ 0, then there is not a crossing.
∗ If xk > 0 and xk−1 ≤ 0 or vice versa, then there may or maybe not be a

crossing. If (xk−1yk − xkyk−1)/(yk − yk−1) > 0, then segment connecting
(xk−1, yk−1) and (xk, yk) crosses x-axis to the right of origin and there is a
crossing: add sk − sk−1 to w. Otherwise, there is not.

• Return: winding number w

Assuming that the loop is done in compiled code, this algorithm is extremely fast—especially
since in most practical examples, we only have sk 6= sk−1 a few times in the loop k =

1, . . . , K.
At https://github.com/shade-econ/nber-workshop-2025/blob/main/notebooks/winding_

number.py, the sample_values_simple() function implements an easy-to-understand ver-
sion of step 1 above for the scalar case, while sample_values() accommodates the block
case aswell and takes advantage of conjugate symmetry for efficiency. winding_number_of_path()
implements step 2.

Further improvements are possible: for instance, if the symbol decays exponentially
past some point, with jt = Cρt−τ for some C and t ≥ τ, then we can analytically calculate
the contribution of jtzt + jt+1zt+1 + . . . to the symbol, which is simply Czt

1−ρz . This is only
useful if we want to extrapolate beyond t = K/2, though, which is fairly rare if we are
sampling a large number K of zk in step 1 to begin with.

A.2 Calculating symbol for heterogeneous-agent blocks

A key input to the algorithm for step 1 in the previous section is the truncated sequence
j−(T−1), . . . , jT−1 describing the symbol, for Jacobians that cannot be further reduced to
simpler ones. This is trivial for simple macroeconomic equations, but more subtle for the
heterogeneous-agent blocks from section 2.5, which we cover here.

From proposition 3, we know that jk is the sum of all entries (out to infinity) on the
kth lower diagonal in the fake news matrix F . If we compute a T × T Jacobian from a
T × T fake news matrix, following the algorithm from Auclert et al. (2021), then the final

A-3
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diagonal entries on the bottom and right of the matrix give sums of all available entries in
F on each respective diagonal, which can approximate the infinite sum. This gives us a
simple way to extract a symbol.

• Simple approach: given a T × T truncated Jacobian calculated for a heterogeneous-
agent block from the fake news algorithm, extract the symbol as

jk ≡

JT−1+k,T−1 −(T − 1) ≤ k ≤ 0

JT−1,T−1−k 0 ≤ k ≤ T − 1.
(A.1)

This approach is not a good idea for arbitrary truncated Jacobians, because they may have
truncation artifacts (“spurious missing anticipation”) near T as discussed in section 4.1.
But het-agent Jacobians as calculated in Auclert et al. (2021) are built up from the fake
news matrix and do not have these artifacts.

The simple approach can work well, but the downside is that each jk only sums finitely
many entries of F , and near the ends this sum is especially short: for instance, jT−1 is just
the single term JT−1,0 = FT−1,0. If the block’s internal persistence is large enough relative
to T, then the resulting symbol can be a poor approximation to the truth.

An alternative approach, starting with the same data, is to use “double extrapolation”.
First, away from the matrix’s edges, we exponentially extrapolate entries of the fake news
matrix along the diagonal to obtain a better approximation to the infinite sum. Then,
we exponentially extrapolate the symbol on the left and right. Below we describe this
procedure in more detail:

• Double-extrapolation approach: given a T × T Jacobian and the associated fake
news matrix, and some positive τ, calculate

fk ≡

FT−1+k,T−1 −(T − 1 − τ) ≤ k ≤ 0

FT−1,T−1−k 0 ≤ k ≤ T − 1 − τ.
(A.2)

and

ρk ≡

FT−1+k,T−1/FT−2+k,T−2 −(T − 1 − τ) ≤ k ≤ 0

FT−1,T−1−k/FT−2,T−2−k 0 ≤ k ≤ T − 1 − τ.
(A.3)

i.e. where fk is the last entry of the fake news matrix on lower diagonal k, and ρk is
the rate of growth of that entry vs. the one before it on the same diagonal. Then add
jk as defined in (A.1) to the extrapolated correction fk

ρk
1−ρk

to obtain our improved
coefficients j̄k.
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We now have j̄k for k from −T̄ through T̄, where T̄ ≡ T − 1 − τ. We can then ex-
ponentially extrapolate out as far as desired, by defining j̄k ≡ j̄T̄ · ( j̄T̄/ j̄T̄−1)

k−T̄ for
k > T̄ on the right and similarly j̄k ≡ j̄−T̄ · ( j̄−T̄/ j̄−(T̄−1))

−T̄−k for k < −T̄ on the left.

The double-extrapolation approach takes advantage of the fact that at long horizons, an-
ticipation and persistence become close to exponential, reflecting the dominant root of
the underlying system. We have found that it works well for models with high internal
persistence, like the calibration we use in section 4, and avoids the downsides of brute
truncation. A choice of τ � 0, so we do not extrapolate from F entries too close to 0
(which do not necessarily decay exponentially), is important. We generally choose τ of at
least 200 or 300.

For robustness, one can also define ρk in (A.3) using the decay over a longer span—the
last 5, 10, or 50 entries on the diagonal, rather than the immediately preceding entry—
although in our own applications we have found that (A.3) works fine. It is important,
however, to begin extrapolation before the entries of F are so small that they are affected
by numerical error, so the T itself should not be too large. Here, one can check that the log
decay of F along a few diagonals is relatively steady, and does not become either erratic
or flatten out by T (both of which indicate likely numerical issues).

A.3 Obtaining inverse symbol and Toeplitz-vector multiplication

Obtaining inverse symbol. In section 4.2, we advocate an iterative strategy that uses the
Toeplitz part of the inverse, T(j−1), as a preconditioner.

To obtain this inverse, we proceed as follows, building on what we already know how
to calculate. Start with the information produced from step 1 of appendix A.1: j(z) eval-
uated on counterclockwise Kth roots of unity zk, for some large even K. Then invert to
obtain j(zk)

−1 = j−1(zk). Flip the order so that the roots are clockwise, multiply each by
(−1)k, then apply the inverse FFT, obtaining some output x0, . . . , xK−1. Finally, obtain co-
efficients of the inverse symbol (j−1)k ≡ xk+K/2 for any desired k = −(T − 1), . . . , T − 1,
where T < 2K.A-2

Toeplitz-vectormultiplication. In sections 4.2 and 4.3, we also take advantage of the fact
that Toeplitz-vector multiplication is cheap. This is due to a standard procedure called
“circulant embedding”.
A-2Like before, this is unchanged in the block case, if we take j(zk)

−1 to be a matrix inverse, and perform
the inverse FFT in parallel for each i, j = 1, . . . , n.
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The calculation can be briefly described as follows. Suppose that we have a vector x =

x0, . . . , xT−1, and we are multiplying it by T(j)with truncated j = j−(T−1), . . . , j0, . . . , jT−1.
We take the FFTof the sequence j0, . . . , jT−1, j−(T−1), . . . , j−1, and then the FFTof x0, . . . , xT−1

padded with zeros at the end to make it also length 2T − 1. Finally, we multiply these two
FFTs and take the inverse FFT of the result to get y0, . . . , y2T−1. The first T entries give our
answer y = y0, . . . , yT−1 = T(j)x.

B Appendix to section 2

B.1 Proof of lemma 1 and proposition 1

These are both standard results on Toeplitz operators.

Proof of lemma 1. We note that we can write any Toeplitz T(j) as a series in the forward
operator F and lag operator L:

T(j) =
∞

∑
k=1

j−kFk +
∞

∑
k=0

jkLk

Since F and L, and their powers, are all bounded operators with norms of 1, we can write

‖T(j)‖ ≤
∞

∑
k=1

|j−k|‖Fk‖+
∞

∑
k=0

|jk|‖Lk‖ =
∞

∑
k=−∞

|jk| ≡ ‖j‖1 (A.4)

and thus T(j) is bounded, with finite norm of at most ‖j‖1.

Proof of proposition 1. This result is usually stated in terms of Hankel operators (see,
e.g., Böttcher and Grudsky 2005).

To see it for ourselves without the Hankel machinery, we note that in (9), we already
showed that Cs+j,s approaches cj as s → ∞, where the sequence c = {cj} is defined to
be the convolution of a and b. The convolution theorem for z-transforms tells us that
c(z) = a(z)b(z). Further, we showed in (11) that the difference E = C − T(c) is given by
Et,s = −∑∞

k=1 at+kb−s−k. All that remains is to show that this E is compact.
To do this, we define Eã,b̃ ≡ T(ã)T(b̃)− T(ã ∗ b̃), for arbitrary absolutely summable

two-sided sequences ã, b̃. We claim that themap from ã and b̃ (with 1-norms) to Eã,b̃ (with
operator norm) is bilinear and bounded. Since bilinearity is mechanical, we will focus on
boundedness. First, from (A.4) above, we already know that the maps from ã and b̃ to
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T(ã) and T(b̃) are bounded. Second, one can show that the mapping from ã and b̃ to the
convolution ã ∗ b̃ is bounded:

‖ã ∗ b̃‖1 = ∑
n

∣∣∣∣∣∑k
ãkb̃n−k

∣∣∣∣∣ ≤ ∑
k
|ãk|∑

n
|b̃n−k| = ‖ã‖1‖b̃‖1. (A.5)

We combine this with (A.4) to get a bounded bilinear mapping from ã and b̃ to T(ã ∗ b̃),
and thus to Eã,b̃.

Now, for any n, define an and bn to be “truncated” versions of a and b, with all entries
with absolute index greater than n set to zero. It follows from the formula in (11) that all
entries of Ean,bn with row or column index greater than n are zero. Since Ean,bn has finitely
many nonzero entries, it has finite rank.

Clearly, an and bn approach a and b as n → ∞. Since the mapping to Ean,bn is bounded
and therefore continuous, it follows that Ean,bn → Ea,b ≡ E as n → ∞. We can therefore
approximate E arbitrarily well (in sup norm) with finite-rank operators, implying that it
is compact.

B.2 Proof of proposition 3

First, we note that for t, s > 0, we have:

Ft,s ≡ Jt,s − Jt−1,s−1 = Et,s − Et−1,s−1. (A.6)

We can therefore write

∞

∑
k=1

Ft+k,s+k =
∞

∑
k=1

(Et+k,s+k − Et+k−1,s+k−1)

= −Et,s + lim
k→∞

Et+k,s+k = −Et,s

where the second line follows from the telescoping sum, and limk→∞ Et+k,s+k = 0 from
the compactness of E. This proves the right side of (15). We now observe that for k ≥ 0,

jk = Jk,0 − Ek,0 = Fk,0 +
∞

∑
v=1

Fk+v,v =
∞

∑
v=0

Fk+v,v,

proving the left side of (15) (together with a symmetric argument for k < 0).
Finally, suppose that we have an F whose entries have a finite absolute sum. Then for

t ≥ s, we recursively sum to obtain Jt,s = ∑s
k=0 Ft−s+k,k. If we define j and E following
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(15), we note that

Jt,s =
∞

∑
k=0

Ft−s+k,k − ∑
k=s+1

Ft−s+k,k = js + Et,s

verifying (together with a symmetric argument for t < s) that J = T(j) + E.

B.3 Fake news matrix for a product of Toeplitz matrices

We found in (10) that when taking the product C = T(a)T(b), we have Ft,s ≡ Ct,s −
Ct−1,s−1 = atb−s for all t, s > 0. All that remains is to characterize the case where t = 0
or s = 0. There, by definition, we have Ft,s = Ct,s, which by (8) equals ∑∞

u=0 at−ubu−s.
Combining these, we have

Ft,s =

atb−s t, s > 0

∑∞
u=0 at−ubu−s t = 0 or s = 0

(A.7)

We can interpret (A.7) as follows. For t, s > 0, Ft,s is the pure effect at date t of having
anticipated at date 0 that there would be a shock at date s. This is the anticipatory effect
b−s, propagated forward by at.

If s = 0, then Ft,0 is the total effect at t from a surprise shock at date 0, which is
∑∞

u=0 at−ubu. This sums up all lagged effects bu, propagated either forward or backward
to t by at−u.

If t = 0, then F0,s is the total effect at date 0 from anticipating a shock at s, which
is ∑∞

u=0 a−ubu−s. This sums up anticipation a−u at every horizon of possible lead or lag
effects bu−s of the shock.

Special case: lower-triangular T(a), upper-triangular T(b). If T(a) is lower-triangular
(purely backward-looking, with ak = 0 for k < 0) and T(b) is upper-triangular (purely
forward-looking,with ak = 0 for k > 0), then the only nonzero term in the sum ∑∞

u=0 at−ubu−s

is atb−s, corresponding to u = 0. (A.7) then simplifies to just

Ft,s = atb−s (A.8)

for all t, s. In other words, the fake news matrix is just the outer product of the nonzero
parts of a and b. This is true, for instance, in our Calvo pricing example, where at =

(1 − θ)θt for t ≥ 0 and 0 for t < 0, and b−s = (1 − βθ)(βθ)s for s ≥ 0 and 0 for s < 0.
This case occurs fairly often, since we often have a purely forward-looking Toeplitz

matrix T(b) that governs policy (e.g. reset pricing), and then multiply this by a purely
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backward-looking Toeplitz matrix T(a) that governs the evolution of the state (e.g. the
aggregate price). For instance, for the bond-in-utility (BU) model of consumption and
savings, Auclert et al. (2024a) derive an asset Jacobian that is the product of a backward-
looking Toeplitz matrix with first column (1, λ, λ2, . . .) and a forward-looking Toeplitz
matrix with first row (1 − m,−m(βλ),−m(βλ)2, . . .). The fake news matrix for this asset
Jacobian is just the outer product of (1, λ, λ2, . . .) and (1 − m,−m(βλ),−m(βλ)2, . . .).

We can even regard the formula in (A.9) for the t ≥ 1 heterogeneous-agent fake news
matrix as a block version of this case, with b−s ≡ ∂D1

∂Xs
and at ≡ Et−1.

B.4 Proof of proposition 4

So that the Jacobian and fake news matrix are well-defined, we will assume local differ-
entiability of all mappings (16)–(18) around the steady state. Auclert, Bardóczy, Rognlie
and Straub (2021) show that the t, s entry of the fake news matrix can be written as

Ft,s =


∂Y0
∂Xs

t = 0

E ′
t−1

∂D1
∂Xs

t ≥ 1
(A.9)

where ∂Y0
∂Xs

and ∂D1
∂Xs

are the responses of the aggregate outcome at date 0 and incoming
distribution at date 1 to the shock at date s (written as dYs

0 and dDs
1 in Auclert et al. 2021),

and Et−1 ≡ (Λss)t−1yss is the t − 1th expectation function.
We note that for s ≥ 1, we can write

∂Y0

∂Xs
= (yv(vv)

s−1vX)
′Dss (A.10)

∂D1

∂Xs
= (Λv(vv)

s−1)′Dss (A.11)

where vv and vX are the derivatives of the function v in (16) with respect to v and X around
the steady state, yv is the derivative of y in (18) with respect to v, and so on.

By stationarity, vv has all eigenvalues strictly inside the unit circle, implying that for
some ∆1 < 1 that bounds these eigenvalues and some constant C1, we have ‖(vv)s‖ ≤ C1∆s

1

for all s. It follows from (A.10)–(A.11) that we can choose suitable constants C2 and C3 such
that ∥∥∥∥ ∂Y0

∂Xs

∥∥∥∥ ≤ C2∆s
1 and

∥∥∥∥∂D1

∂Xs

∥∥∥∥ ≤ C3∆s
1 (A.12)

for all s. (We can always choose C2 and C3 such that this bound applies for s = 0 as well.)
By stationarity, Λss has all eigenvalues except one inside the unit circle. Since Λss

is Markov, the other eigenvalue must be 1, corresponding to Λss1 = 1. If we define
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Cx ≡ x − 1
n 11′x to be the demeaning operator that returns a vector minus its mean, then

we note that CΛss has the same eigenvalues as Λss, but with the 1 replaced by a 0, and
thus its eigenvalues are all strictly inside the unit circle and bounded by some ∆2 < 1.
Furthermore, for any t, we have (CΛss)t = C(Λss)t. We conclude that we can choose some
C4 such that ‖CEt‖ = ‖(CΛss)tyss‖ ≤ C4∆t

2.
Finally, we observe that since the sum of the distribution never changes, 1′ ∂D1

∂Xs
= 0,

and therefore (CEt−1)
′ ∂D1

∂Xs
= E ′

t−1C ′ ∂D1
∂Xs

= E ′
t−1

∂D1
∂Xs

, allowing us to bound with∥∥∥∥E ′
t−1

∂D1

∂Xs

∥∥∥∥ ≤ C4∆t−1
2 C3∆s

1 ≡ C5∆t
2∆s

1. (A.13)

Finally, going back to (A.9), and combining (A.12) and (A.13), if we set C ≡ max(C2, C5)

we obtain
|Ft,s| ≤ C∆t

2∆s
1

which, setting ∆ ≡ max(∆2, ∆1), is the desired bound.

B.5 Description of heterogeneous-agent model and fiscal shock

Model and calibration. We take a standardheterogeneous-agent household block,where
individual households make consumption and savings decisions subject to uninsurable
idiosyncratic risk and an occasionally binding borrowing constraint, as in Auclert et al.
(2024a) and Auclert et al. (2025). Most of our calibration choices are standard: we have a
quarterly calibration with an elasticity of intertemporal substitution of 1, an AR(1) lognor-
mal income process with annualized persistence 0.91 and cross-sectional standard devia-
tion 0.92 (both from Auclert et al. 2024a), and an annualized real interest rate of 2%. As in
the baseline model in Auclert et al. (2024a), we assume that the only asset is government
debt.

The remaining parameter to calibrate is the discount factor β. We do this in two ways,
both of which hit a quarterly weighted MPC target of 0.2 as in Auclert et al. (2025):

• Calibration 1. This is a simple, standard calibration, which we use as our calibration
outside of section 4. Here we have a single β for all agents, and calibrate it to β =

0.9734 to hit the quarterlyMPC target. This implies a fairly low aggregate asset level,
equal to 68% of annual household income.

• Calibration 2. Here, loosely inspired by Auclert et al. (2025), we also attempt to tar-
get a more realistic level of aggregate assets, equal to 500% of annual household
income. Here, we do so by replacing the single β with a stochastic β, where as
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in Auclert et al. (2025), households draw a new, random β on average every 100
quarters (25 years) to reflect generational turnover. We allow for four equispaced β

values, and calibrate the level and spacing of the βs to hit both the MPC and asset
targets. The resulting calibration features a minimum β = 0.9445 and a maximum
β = 1.0023. (Note that since this maximum β is not permanent, it is permissible de-
spite being greater than 1.) This more sophisticated calibration implies a richer state
space—since households are heterogeneous in income, assets, and patience—and
also features muchmore endogenous persistence, since themost patient households
try to hold on to their assets indefinitely. Due to these more challenging features, we
use it as our calibration in section 4, so that we have a testbed where approximating
the symbol and correction is relatively difficult.

Countercyclical income inequality. For our determinacy exercises in section 3, we also
allow for an alternative version of the model where income inequality (and thus also in-
come risk) is countercyclical in aggregate income. Concretely, as in Auclert and Rognlie
(2020) and Auclert et al. (2025), we assume that aggregate labor demand Nt is rationed

across households with an “incidence function” nit = γ(Nt, eit) = Nt
eζ log Nt

it

Eeζ log Nt
it

, where E de-

notes cross-sectional expectations. Households’ total pretax income is then niteit, where
eit is their exogenous productivity. Since eit becomes negatively correlated with nit when
aggregate Nt = Yt is high, inequality is countercyclical, with ζ being the sensitivity of the
standard deviation of log income with respect to aggregate output.

In this case, the Jacobians A and M out of income changes from Yt = Nt changing are
in principle different from the Jacobians AT and MT out of income changes from taxes Tt

changing. For simplicity, however, we will assume that AT and MT are equal to A and M,
i.e. that changes in taxes have the same marginal incidence.

Fiscal shock. For our fiscal shock of interest in sections 4 and 5, we choose a deficit-
financed tax cut similar toAuclert et al. (2025). We specify the tax-cut shock itself, dTshock

t ≡
−0.9t, to decay geometrically. We then write dBt = 0.975 · dBt−1 − dTshock

t , so that all else
equal, debt in a period increases by the amount of the tax-cut shock, but that the fiscal rule
also attempts to reduce the total debt by 2.5% each quarter. The actual tax path is then de-
termined residually from {dBt}: dTt = (1 + r)dBt−1 − dBt. We assume that government
spending is zero and unchanged.
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B.6 Proof of proposition 5

Step 1: Obtaining the fake newsmatrix and Jacobian from the state-space solution. As
appendix B.7 shows, the state-space solution obtained from (21) is

xt = Pxt−1 +
∞

∑
j=0

RjQ0Et[ut+j]. (A.14)

Then, from it, we can obtain the block entries of the fake news matrix and Jacobian, re-
spectively.

Ft,s = PtQs = PtRsQ0

Jt,s =
min{t,s}

∑
k=0

Pt−kRs−kQ0

For s = t + j and j ≥ 0 we have that the (t, t + j) entry of the Jacobian is

Jt,t+j =

[
t

∑
k=0

PkRk

]
RjQ0.

For t = s + j and j ≥ 0 we have that the (t + j, t) entry of the Jacobian is

Js+j,s = Pj

[
s

∑
k=0

PkRk

]
Q0.

Step 2: Deriving the symbol and correction. From (15) in proposition 3, the symbol
defining the Toeplitz part is

j (z) =

[
∞

∑
j=−∞

zjPmax{−j,0}ΩRmax{j,0}
]

Q0

and the correction is

Et,s = −Pmin{s,t}+max{t−s,0}+1ΩRmin{s,t}+max{s−t,0}+1Q0,

where Ω is

Ω =

[
∞

∑
k=0

PkRk

]
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and satisfies the Lyapunov equation

Ω = PΩR + I.

This final equation allows us to rewrite the correction as

Et,s = Pmin{s,t}+max{t−s,0} (I − Ω)Rmin{s,t}+max{s−t,0}Q0.

That T(j) is block Toeplitz and Ω exists follows from the assumption that the solution is
stable.

Step 3: Observing the rank of the correction E. We define s = t + j. For any possible j,
min{t + j, t}+ max{−j, 0} = t and min{t + j, t}+ max{j, 0} = t + j, so

Et,s = Pt (I − Ω)RsQ0.

Define P as all of the Pt s stacked on top of one another and R as all of the Rs s stacked
beside each other, so that

P =


P0

P1

P2

...


R =

[
R0Q0 R1Q0 R2Q0 . . .

]
.

Now, we observe

E = P (I − Ω)R

Clearly, the rank of P is finite (E is therefore a compact operator on ℓ2(Rn), meaning J =

T(j) + E is block quasi-Toeplitz) and limited to the rank of P, which is simply the size of
the state space.

Finally, one can see, by applying selection matrices to T(j) and E, that the properties
of the full Jacobian J will also apply to the Jacobians that map each exogneous variable to
each endogenous variable. That is, they will be quasi-Toeplitz and their corrections will
have rank less than or equal to the rank of P.
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B.7 Determinacy in the canonical form of (21)

Finding the state-space solution. Start from the following canonical linear system,which
is equivalent to that in (21).

AEt [xt+1] + Bxt + Cxt−1 + Dut = 0n×1.

All matrices (A, B, C, and D) are n × n and all vectors xts and uts are n × 1. If there
are more entries in ut than shocks, we stipulate that all of the residual entries (those not
corresponding to shocks in the model) are known to be zero for all t. The solution is

xt = Pxt−1 +
∞

∑
j=0

QjEt
[
ut+j

]
,

with the coefficient matrices satisfying the equations below.

0 = AP2 + BP + C (A.15)

Q0 = − (AP + B)−1 D (A.16)

Qj =
(
− (AP + B)−1 A

)
︸ ︷︷ ︸

R

j
Q0. (A.17)

We solve for the coefficients by solving the matrix quadratic (A.15). The process of doing
so begins by noting that it can be written in the form[

In 0n×n

0n×n A

]
︸ ︷︷ ︸

Φ1

[
In

P

]
P =

[
0n×n In

−C −B

]
︸ ︷︷ ︸

Φ0

[
In

P

]
.

Define the QZ decomposition associated with Γ0 and Γ1 such that

Φ0 =

[
Q11 Q12

Q21 Q22

] [
S11 S12

0n×n S22

] [
Z11 Z12

Z21 Z22

]∗

Φ0 =

[
Q11 Q12

Q21 Q22

] [
T11 T12

0n×n T22

] [
Z11 Z12

Z21 Z22

]∗
,

where each block is n × n, Sii and Tii are upper triangular, and we’ve chosen the QZ de-
composition that sorts the n smallest generalized eigenvalues into the top right corner.
Given this, it’s possible to show that P = Q11S11T−1

11 Q−1
11 = Z21Z−1

11 satisfies (A.15). The
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Qjs can then be computed with (A.16) and (A.17).
Under the assumption that this system satisfies the Blanchard-Kahn conditions, this

solution exists and is unique. But, what are the Blanchard-Kahn conditions, in this case?
We’ll cover that now.

Getting to Blanchard and Kahn (1980). First, note that the canonical form in (21) is the
same as

Φ1

[
xt

Et[xt+1]

]
= Φ0

[
xt−1

xt

]
+

[
0n×n

−D

]
ut.

If we knew A to be invertible, we could invert Φ1 and the resulting system would exactly
be the canonical form of their equation (1a) in Blanchard and Kahn (1980), where A in
(1a) is equal to Φ−1

1 Φ0 here. In that case, by their proposition 1, the equivalent condition
would be that Φ−1

1 Φ0 has exactly n unstable eigenvalues (i.e. outside the unit circle). Why
would that be? We need n extra conditions to pin down the value of Et[xt+1], given xt−1

and ut, since we don’t know what xt is. We may impose that xt is stable, but that only has
bite if it could possibly be unstable. Consequently, requiring stability only gives us n extra
conditions if there are n unstable eigenvalues.

If A is not known to be invertible, we may use generalized eigenvalues instead to get
at the equivalent conditions. A generalized eigenvalue λ of our system solves

det (Φ0 − λΦ1) = 0.

Then, the conditions for existence and uniqueness are:

1. A rational expectations equilibrium exists if there are at least n generalized eigenval-
ues less than 1 in absolute value;

2. A rational expectations equilibrium is unique if there are exactly n generalized eigen-
values less than 1 in absolute value.

More concretely, the determinant is

det(Φ0 − λΦ1) = det

[
−λIn In

−C −B − λA

]
= det(Aλ2 + Bλ + C) (A.18)

and the generalized eigenvalue λ solves

0 = det(Aλ2 + Bλ + C). (A.19)
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From Blanchard-Kahn to the winding number. Comparing this to the winding num-
ber criterion for (21) we observe a very close resemblance. The determinant of the block
symbol for the equivalent block Toeplitz system is

det j(z) = det(Az−1 + B + Cz) = zn det(Az−2 + Bz−1 + C).

Then we recognize that wind(det j) is equal to zero only as long as det(Az−2 + Bz−1 + C)

has n roots inside the unit circle, since it has 2n poles inside the unit circle and zn has n
roots inside the unit circle.

According to the winding number test, we only have a unique solution as long as this
condition holds. If it has more, a solution does not exist. If it has fewer, there are many
solutions. These are precisely the Blanchard-Kahn conditions for the systemwe described
above.

Getting to Sims (2002). Equation (21), in the form of Sims (2002) is[
A B

0n×n In

]
︸ ︷︷ ︸

Γ0

[
Et[xt+1]

xt

]
=

[
0n×n −C

In 0n×n

]
︸ ︷︷ ︸

Γ1

[
Et−1[xt]

xt−1

]
+

[
−D
0n×n

]
︸ ︷︷ ︸

Ψ

ut +

[
−A
0n×n

]
︸ ︷︷ ︸

Π

ηt, (A.20)

where ηt = xt+1 − Et[xt+1]. In this form, we may solve the model and apply Sims’ tests
for existence and uniqueness. These are not exactly the same as root-counting tests.

B.8 Details on the neoclassical growth model

Households’ problem. Households choose capital Kt and Ct in eachperiod, takingprices
as given, to maximize

∞

∑
t=0

βtU(Ct), (A.21)

subject to

Kt + Ct ≤ (1 + rt)Kt−1. (A.22)

For now we assume that U(Ct) =
C1−σ

t
1−σ .

Firms take interest rates as given, choosing capital tomaximize profits, which are given
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by

Πt = f (Kt−1, Zt)− (1 + rt)Kt−1,

where f (Kt−1, Zt) = ZtKα
t−1 + (1 − δ)Kt−1.

Combining the households’ and firms’ FOCs yields the Euler equation

0 = U′( f (Kt−1, Zt)− Kt)− β fK(Kt, Zt+1)U′( f (Kt, Zt+1)− Kt+1), (A.23)

which we linearize to obtain (22).

Adding in production externalities. When we add in a production externality à la Bax-
ter and King (1991) and Benhabib and Farmer (1994), the household’s problem remains
the same, but the firm’s problem changes. Firms now take total output and interest rates
as given, choosing capital to maximize profits, which are given by

Πt = g(Yt, Kt−1, Zt)− (1 + rt)Kt−1,

where g(Yt, Kt−1, Zt) = ZtY
γ
t Kα

t−1 + (1 − δ)Kt−1, with Yt = Z
1

1−γ

t K
α

1−γ

t in equilibrium.

Combining these, we define f (Kt−1, Zt) = Z
1

1−γ

t K
α

1−γ

t−1 + (1 − δ)Kt, which is g(·) evaluated
at the equilibrium level of output.

Now, the modified Euler equation of the neoclassical growth model is

0 = U′( f (Kt−1, Zt)− Kt)− β ((1 − γ) fK(Kt, Zt+1) + γ(1 − δ))U′( f (Kt, Zt+1)− Kt+1),
(A.24)

and the linearized form becomes

fKdKt−1 −
(

1 + fK + (1 − γβ(1 − δ))
fKK

fK

U′

U′′

)
dKt + Et[dKt+1]

=

(
fZ + (1 − γβ(1 − δ))

fKZ

fK

U′

U′′

)
Et[dZt+1]− fZdZt.

(A.25)

Notice that this nests the case without increasing returns.
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Why is the rank of the correction to JdK,dZ still 1?. Start by noting the symbol of JdK,u =

T(k) + Ek is k(z) = 1
q−p ∑ pmax{k,0}qmax{−k,0}zk. Further, the composite Jacobian is

JdK,dZ = T(k ∗ h) + Ek,h +
p

p − q
FT(h), (A.26)

where Ek,h = T(k)T(h)− T(k ∗ h). Using (11), entry (t, s) of Ek,h is − p
p−q pth−11(s < 1).

Notice that this is a rank 1 matrix and that one of the vectors it is composed of is also a
basis vector for p

p−qFT(h). So, wemaywrite the total correction as a rank 1matrix as well.

C Appendix to section 3

C.1 Proof of proposition 6

This is a standard result. We start with theorem 1.15 from Böttcher and Silbermann (2012)
and its proof, which shows that if its winding number is n, we can factorize a Toeplitz
operator as

T(j) =

T(j−)LnT(j+) n ≥ 0

T(j−)F−nT(j+) n ≤ 0
(A.27)

where T(j−) and T(j+) are invertible operators, and are respectively upper and lower
triangular.A-3

Due to this invertibility, indet(T(j)) andnonex(T(j)) are indet(Ln) = 0 andnonex(Ln) =

n for n ≥ 0, and indet(F−n) = −n and nonex(F−n) = 0 for n ≤ 0. Cases 2 and 3 of propo-
sition 6 follow.

If n = 0, then indet(T(j)) = 0 and nonex(T(j)) = 0, and T(j) is invertible. Let j−1 be
the inverse of j in the sense of convolution.A-4 We calculate:

T(j)−1 − T(j−1) = T(j)−1(I − T(j)T(j−1)) = −T(j)−1E

where E is the compact correction from T(j)T(j−1) = I + E. Hence T(j)−1 equals the
Toeplitz T(j−1) plus some compact operator −T(j)−1E, and is quasi-Toeplitz.A-5

A-3The corresponding factorization of the symbol into j−(z), zn, and j+(z) is often called the Wiener-Hopf
factorization.
A-4The existence of such an inverse is guaranteed byWiener’s theorem,which states that that for any symbol

j(z) = ∑∞
k=−∞ jkzk in the Wiener algebra, i.e. where the jk have a finite absolute sum, then as long as j(z)

has no zeros on T, j−1 is also in the Wiener algebra. See Example 1.5 of Böttcher and Silbermann (2012).
A-5An alternative derivation that explicitly constructs quasi-Toeplitz T(j)−1 uses the factorization

T(j−)T(j+) and the fact that the upper and lower triangular parts T(j−) and T(j+) also have upper and
lower triangular Toeplitz inverses, respectively.
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C.2 Proof of proposition 7

Proposition 6 implies that J = T(j) is a Fredholm operator, since it is an operator on Hilbert
space with finite-dimensional kernel and cokernel. It has index

ind(J) = indet(J)− nonex(J) = −wind(j)

The proposition then follows from the fact that Fredholm index is unchanged by adding
a compact operator E.

C.3 Proof of proposition 8

If proposition 6 applies for some quasi-Toeplitz J, then J must be injective or surjective.
Conversely, if a quasi-Toeplitz J is injective or surjective, then proposition 7 implies propo-
sition 6 (aside from the structure of J−1 when it exists, which we will handle separately).
Hence, to show that proposition 6 holds for generic J, it suffices to show that J is generically
injective or surjective.

We will make use of the fact that by proposition 7, all quasi-Toeplitz J where wind(j)
is defined are Fredholm operators on ℓ2 and thus have closed range.

First, we consider openness. If some J is injective, then it is a bĳection between ℓ2 and
range J, and there is some bounded inverse K0 defined on range J such that K0J = I.
Because range J is closed, we can define K ≡ K0P, where P is the orthogonal projection of
ℓ2 onto range J, to obtain a left inverse K : ℓ2 → ℓ2 satisfying KJ = I. Defining m ≡ ‖K‖−1,
we note that ‖Jx‖ ≥ m‖x‖ for all x. Thus, for any perturbation satisfying ‖Jϵ‖ < m, we
have ‖(J+ Jϵ)x‖ > 0. It follows that J+ Jϵ is also injective, andwe conclude that the subset
of injective J is open.

Because its range is closed, surjectivity of J is equivalent to injectivity of the adjoint J∗,
so the same argument on adjoints implies that the subset of surjective J is open. It follows
that the union (the set of J that are injective or surjective) is also open.

Now, we consider denseness. Suppose we have some quasi-Toeplitz J that is neither
injective nor surjective. Define n = min(nonex(J), indet(J)). Choose orthonormal sets
e1, . . . , en and f1, . . . , fn in the kernel null J and the cokernel (range J)⊥, respectively. Let
Ẽ be the finite-rank operator mapping each ei to fi (and (null J)⊥ to zero). We note that
‖Ẽ‖ = 1, and that the ranges of J and Ẽ are orthogonal. Then:

• If n = indet(J), then the null spaces of J and Ẽ are also orthogonal, and thus either
Jx or Ẽx must be nonzero for any nonzero x. Hence for any ϵ and nonzero x, we have
‖(J + ϵẼ)x‖2 = ‖Jx‖2 + ϵ2‖Ẽx‖2 > 0. It follows that J + ϵẼ is injective.
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• If n = nonex(J), then the ranges of J and Ẽ provide a direct sum decomposition of
ℓ2, and hence for any ϵ, J + ϵẼ is surjective.

We conclude that by choosing arbitrarily small ϵ, we can always find a J + ϵẼ (which is
still quasi-Toeplitz since Ẽ has finite rank) arbitrarily close to J that is injective or surjec-
tive.A-6 Combining with our earlier insights, it follows that quasi-Toeplitz J are generically
injective or surjective, and thus that proposition 6 (aside from the structure of J−1 when it
exists) holds generically.

Finally, we need to show that J−1, when it exists, is quasi-Toeplitz. To do so, we note
that if J is invertible, the winding number wind(j) must be 0 by proposition 7, in which
case proposition 6 tells us that T(j)−1 exists and is quasi-Toeplitz. We then define E0 ≡
−J−1ET(j)−1, which the product of compact and bounded operators and thus compact.
We can easily verify that J−1 = T(j)−1 + E0, and therefore J−1 is also quasi-Toeplitz.

C.4 Proof of proposition 9

The generic statements here follow from proposition 8. The fact that wind(j) < 0 im-
plies indeterminacy (indet(J) > 0) and wind(j) > 0 implies nonexistence (nonex(J) > 0)
follows from proposition 7 and indet(J) and nonex(J) both being nonnegative. The ”non-
generic” case, as discussed in the proof of proposition 8, is one where J is neither injective
nor surjective, so that indet(J), nonex(J) > 0. Finally, the final part of the proof of propo-
sition 8 showed that J−1 is quasi-Toeplitz whenever it exists.

C.5 Proofs of propositions 10 and 11

The proofs of lemma 1 and propositions 1–3 go through unchanged, replacing scalar
Toeplitz entries with blocks at each step.

To extend proposition 7, with wind(det j) replacing wind(j), we apply theorem 6.5
from Böttcher and Silbermann (2012), which states that block Toeplitz operators have a
Fredholm index equal to −wind(det j). The same argument for genericity as in the proof
of proposition 8 then goes through, and the argument for nearly all of proposition 9 is also
unchanged.

All that remains is to show that when a block quasi-Toeplitz operator is invertible,
its inverse is also block quasi-Toeplitz. To do so for block Toeplitz operators, we apply
theorem 6.6 from Böttcher and Silbermann (2012), which provides a factorization of the
A-6This is a standard argument—developed, for instance, in amore general context in Theorem 2.2 of Chap-

ter 10 in Clancey and Gohberg (1981). Onatski (2006) cites an implication of this result proven in the same
text for his genericity result.
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symbol that implies a factorization of T(j) into T(j−) and T(j+), exactly as in our proof of
proposition 6. (This factorization only exists if all the “right partial indices” are zero, but
this must be true for the operator to be invertible in the first place.) This, in turn, implies a
block quasi-Toeplitz inverse through the same logic as in that proposition. The extension
to the block quasi-Toeplitz case is then the same as in proposition 9.

D Appendix to section 4

D.1 Proof of proposition 12

For quasi-Toeplitz operators, this follows from the collective results in section 2 of Böttcher
and Silbermann (2012). Their theorem 2.16 shows that what they call “stability” of a se-
quence is unaffected by adding a compact operator, if its limit is invertible. This allows
us to restrict ourselves to the Toeplitz case. Then, theorem 2.11 shows that the sequence
of finite sections of an invertible Toeplitz operator is stable, and proposition 2.4 shows the
stability plus invertibility of the limit implies that a sequence is an “applicable” “approxi-
mation method” to its limit (as defined prior to theorem 2.1), which includes as part of its
definition our desired convergence.

For block quasi-Toeplitz operators, we use the extension of these results to the block
case in section 6 of the same text. In particular, theorem 6.10 says that block quasi-Toeplitz
finite sections are stable if the operator is invertible and the block Toeplitz operator whose
sequence is flipped relative to the Toeplitz part (i.e. the Toeplitz with symbol a(z−1) vs.
the original symbol a(z)) is also invertible. Since a(z−1) and a(z) have the same winding
number, this latter requirement holds generically whenever the block quasi-Toeplitz op-
erator is itself invertible (since this requires a winding number of zero). Section 6.2 of the
text says that “propositions 2.2 and 2.4 remain valid in the block case”, from which the
rest of the argument goes through.

E Appendix to section 5

E.1 Global effect of the tax-financed fiscal shock

Figures E.1 and E.2 plot the output effects of our fiscal shock—a deficit-financed tax cut in
the US at date 0, which after roughly 10 quarters starts being paid down—for all countries
in theworld, as a percentage of their steady-stateGDP.On impact, figure E.1 shows that the
output boom is overwhelmingly concentrated in the US (and to a lesser degree in Canada
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Figure E.1: Impact effect of deficit-financed US tax cut on output, as percent of GDP
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Figure E.2: Effect of US fiscal shock on output after 20 quarters, as percent of GDP

and Mexico). After 20 quarters, figure E.2 shows that output has returned roughly to
steady state in the US—as the contractionary effects of paying down the debt begin to
hit—but there is still a slight boom in Canada and Mexico, and an even slighter boom in
the rest of the world (note the different scale from the previous figure).
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