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STARTING POINT

• At this point, we’ve linearized our model and we’ve cast the equations of the
model n equations into the following form

0n×1 = AEt [xt+1] + Bxt + Cxt−1 + Fut (1)

• xt is an n× 1 vector of the variables in our model and ut is an m× 1 vector of
serially-uncorrelated exogenous shocks such that Et [ut+1] = 0m×1

• The Goal: Find a law of motion for xt that satisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equationsatisfies this equation, under the
assumption that expectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motionexpectations are formed using this law of motion

1 / 17



UNDETERMINED COEFFICIENTS

• We conjecture a solution of the following form

xt = Pxt−1 + Rut (2)

and plug it into equation (1)

0n×1 = AEt [P(Pxt−1 + Rut) + Rut+1] + Bxt + Cxt−1 + Fut

⇒ Bxt = −
(
AP2 + C

)
xt−1 − (APR+ F) ut

• Further, by our conjecture

Bxt = B (Pxt−1 + Rut)
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UNDETERMINED COEFFICIENTS

• Now we know that, in order for the conjectured equation to be correct, two
equations must hold:

0n×n = AP2 + BP+ C (3)
R = − (AP+ B)−1 F (4)

• Solving the problem is now based on solving equation (3), which is just a
matrix algebra problem!
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SOLVING THE MATRIX QUADRATIC

• Solving the problem is based, in part, on noticing that equation (3) can be
written as

Φ0

[
In
P

]
= Φ1

[
In
P

]
P

where

Φ0 =

[
0n×n In
−C −B

]
and Φ1 =

[
In 0n×n
0n×n A

]
• Before we can take this any further, we’ll need some new tools: the QZ
Decompositions and Generalized Eigenvalues

4 / 17



QZ DECOMPOSITIONS
DEFINITION 1

The QZ decomposition of the n× n matrix pair A, B is consists of the matrices Q,
Z, S, and T such that A = QSZ∗, B = QTZ∗, and the following statements are true:

1 S and T are upper triangular;

2 Q and Z are unitary, which means QQ∗ = Q∗Q = In and ZZ∗ = Z∗Z = In,
where ∗ denotes the complex conjugate.

• A QZ decomposition is unique only up to the ordering of entries on the
diagonals! The ratios of the diagonal entries

∣∣∣T −1
i,i Si,i

∣∣∣ are generally unique,
however

• We can choose a specific QZ decomposition based on how we want to order
the ratios
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GENERALIZED EIGENPROBLEM

DEFINITION 2

1 A generalized eigenvalue λ of the n× n matrix pair A,B is a value such that
det (A− λB) = 0

2 A generalized eigenvector v of the n× n matrix pair A,B is an n× 1 vector
such that Av = λBv, where λ is a generalized eigenvalue

• There is a special relationship between the generalized eigenvalues λi of a
matrix pair A,B and the ratios of the diagonal entries of the corresponding
QZ decompositions T −1

i,i Si,i : they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same!they’re the same! This will be a very useful
fact...
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PUTTING IT TO WORK

• Define the QZ decomposition associated with Φ0 and Φ1 such that

Φ0 =

[
Q11 Q12
Q21 Q22

] [
S11 S12
0n×n S22

] [
Z11 Z12
Z21 Z22

]∗
Φ1 =

[
Q11 Q12
Q21 Q22

] [
T11 T12
0n×n T22

] [
Z11 Z12
Z21 Z22

]∗
,

where each block is n× n, Sii and Tii are upper triangular, and we’ve chosen
the QZ decomposition that sorts the n smallest generalized eigenvalues into
the top right corner

• Given this, it’s possible to show (annoying, though) that
P = Q11S11T−1

11Q
−1
11 = Z21Z−1

11 satisfies the matrix quadratic in equation (3)
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THE SOLUTION AT LAST

• We now have expressions for the law of motion in terms of the model
parameters:

P = Q11S11T−1
11Q

−1
11 = Z21Z−1

11 (5)
R = − (AP+ B)−1 F (6)

DEFINITION 3

The law of motion xt = Pxt−1 + Rut constitutes a linear rational expectations
equilibrium if it satisfies equation (1) and the boundary condition

lim
j→∞

Et
[
xt+j

]
= 0n×1. (7)
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THE SOLUTION AT LAST

• We now have expressions for the law of motion in terms of the model
parameters:

P = Q11S11T−1
11Q

−1
11 = Z21Z−1

11 (5)
R = − (AP+ B)−1 F (6)

• Existence: Can we find a stable P?
• Uniqueness: How many stable Ps are there?
• How do we know that solution existsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexistsexists? How do we know it’s uniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueuniqueunique?
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EXISTENCE AND UNIQUENESS
• A Very Important Fact: Recall that the diagonal of S11T −1

11 contains n
generalized eigenvalues and we can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choosewe can choose which n of the 2n generalized
eigenvalues are on the diagonal (since the QZ decomposition is non-unique)!

CONDITIONS FOR EXISTENCE AND UNIQUENESS

A generalized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvaluegeneralized eigenvalue λ of our system solves

det (Φ0 − λΦ1) = 0.

1 A rational expectations equilibrium exists if there are at leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat leastat least n generalized
eigenvalues less than 1 in absolute value;

2 A rational expectations equilibrium is unique if there are exactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactlyexactly n
generalized eigenvalues less than 1 in absolute value.
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GENSYS
• Gensys starts with a linearized model, but in a form that’s slightly different
from equation (1):

Axt = Bxt−1 + Cηt + Fut, (8)

where A might be singular, so we can’t just invert it directly
• In this equation, ηt is a p× 1 vector of expectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errorsexpectational errors, the difference
between the a variable as it is realized at time t+ 1 and its expectation at
time t

• While we impose distributional assumptions on ut (same ones as before),
there are no restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictionsno restrictions on ηt beyond Et[ηt] = 0p×1 for all t

• The essence of this method is using the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary conditionusing the boundary condition to pin down ηt’s
behavior
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RETURN OF THE QZ DECOMPOSITION

• We start by taking the QZ decomposition of the matrix pair A,B such that
A = QSZ∗ and B = QTZ∗. We also define wt = Z∗xt, so we have

Swt = Twt−1 +Q∗C︸︷︷︸
C̃

ηt +Q∗F︸︷︷︸
F̃

ut

• We choose the QZ decomposition so that the entries on the diagonal of
S−1T that are greater than 1 are in the lower right corner so[

Sss Ssu
0nu×ns Suu

] [
ws,t
wu,t

]
=

[
Tss Tsu
0nu×ns Tuu

] [
ws,t−1
wu,t−1

]
+

[
C̃s
C̃u

]
ηt +

[
F̃s
F̃u

]
ut.
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THE EXISTENCE CONDITION

• Because we require the boundary condition, equation (7), to hold, we need
wu,t = wu,t−1 = 0nu×1. Otherwise, the unstable coefficients S−1

uu Tuu would
cause the system to explode. We therefore need C̃uηt + F̃uut = 0nu×1 for all t,
which implies our existence condition

CONDITION FOR EXISTENCE

In order for a rational expectations equilibrium to exist, the column space of F̃u must
be contained within the column space of C̃u. That is,

span
(
F̃u

)
⊂ span

(
C̃u

)
. (9)
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BUT, HOW DOES IT WORK?

• Okay, fine. Suppose that span
(
F̃u

)
̸⊂ span

(
C̃u

)
• For any ut, −F̃uut ∈ span

(
F̃u

)
. If span

(
F̃u

)
̸⊂ span

(
C̃u

)
, then there exists

some ut such that −F̃uut /∈ span
(
C̃u

)
, which means there cannot exist any

ηt such that −F̃uut = C̃uηt. As a consequence, there are realizations of ut
such that C̃uηt + F̃uut ̸= 0nu×1, which can never happen if we have a rational
expectations equilibrium
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THE UNIQUENESS CONDITION
• Suppose an equilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium existsequilibrium exists. Then

ws,t = S−1
ss Tssws,t−1 + S−1

ss C̃sηt + S−1
ss F̃sut

and our equilibrium is only unique if there is a unique matrix Ω such that
C̃s = ΩC̃u

CONDITION FOR UNIQUENESS

In order for a rational expectations equilibrium to be unique, the row space of C̃s
must be contained within the row space of C̃u. That is,

span
(
C̃′

s
)
⊂ span

(
C̃′

u
)
. (10)

14 / 17



CHECKING EXISTENCE AND UNIQUENESS
• The existence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence conditionexistence condition implies there exists Γ such that F̃u = C̃uΓ
• Let C̃u have SVD UDV ′. Then existence requires

0 =
(
C̃uVD−1U ′ − In

)
F̃u,

which we can check
• Similarly, uniqueness requires

0 = C̃s

(
VD−1U ′C̃u − In

)
,

which may also be verified. This also yields our crucial Ω matrix

Ω = C̃sVD−1U ′ (11)
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THE SOLUTION

• Now, suppose we have an Ω and it’s unique, then we obtain the rational
expectations solution xt = Pxt−1 +Qut, where

P = Z
[
S−1

ss Tss 0ns×nu
0nu×ns 0nu×nu

]
Z∗ (12)

Q = Z
[
S−1

ss (F̃s −ΩF̃u)
0nu×m

]
(13)

• This is everything Dynare is doing when it solves a model you throw into it!
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THE END

• We’ve covered two common methods for solving linear rational expectations
models

• There are others, but these are the most widely-used approaches
• The ideas behind the two are pretty similar and, despite the tons of matrix
algebra, pretty simple

• TheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoreticallyTheoretically , the QZ decomposition isn’t necessary to deal with singularity
or anything else we’re working with. However, in practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practicein practice, we need it
because it does the same things in a numerically stable way

• Pick your favorite! They’ll get you the same thing, anyway
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