
Solving Models: Neural Nets Evan Majic

Structure of the Net
We’ll first introduce some notation. Let xi be the i-th input and yi be the i-th output

(the final one). We denote the k-th output of layer j as vj,k. αj,k,l is the coefficient on
output l of the previous layer (j − 1) in the k-th node of layer j. Let βj,k be the constant
term for node k in layer j (these are often called ‘bias’ terms in ML settings). φj is the
activation function for layer j. The activation function takes a scalar input and returns
a scalar output. Common choices for the activation function are the sigmoid function
(1+exp(−x))−1 and the ReLU function max{0, x}. There are many other possible options
out there for activation functions, however.
As a first example, suppose we have a network with N inputs and Q outputs with one

hidden layer with M1 nodes. Then, we can write the network as

v1,j = φ1

(
β1,j +

N∑
k=1

α1,j,kxk
)

yl = β2,l +
M∑
j=1

α2,l,jv1,j.

For a second example, consider if, instead, we had a network with two hidden layers with
M1 and M2 nodes each. We can write this network as

v1,j = φ1

(
β1,j +

N∑
l=1

α1,j,lxl
)

v2,k = φ2

β2,k +
M1∑
j=1

α2,k,jv1,j


ym = β3,m +

M2∑
k=1

α3,m,kv2,k.

We can continue this way if we want to add layers. When we talk about adding nodes, we
talk about changing M in the first example or M1 and/or M2 in the second example. We
can also transform the outputs suitably, depending on what restrictions we want to place
on it. For example, if we want output m to only take on values between zero and one, we
can apply the sigmoid function to it.
The structure of this model means that we can very easily compute outputs recursively.

α1, α2, and α3 are M1 ×N, M2 ×M1 and Q×M2 matrices, while β1, β2, and β3 are M1 × 1,
M2 × 1, and Q× 1 vectors. Then do the following:

v1 = φ1 (β1 + α1x)
v2 = φ2 (β2 + α2v1)
y = β3 + α3v2.

1



Solving Models: Neural Nets Evan Majic

The fact that we’re starting from the back and moving only in the forward direction makes
this a feedforward network. I should also say that, in a slight abuse of notation, I put
φi around vectors, when it’s defined only for scalar inputs. That’s just to say that it the
function should be broadcast over the whole vector (applied to each entry). Ok, anyway,
that’s nice and easy.
Before moving on to training, we should make note of the fact that this function is quite

amenable to differentiation; it welcomes it. Consider again the second example with two
layers, we can quite easily compute ∂ym

∂xl .

∂ym
∂xl

=

M2∑
k=1

α3,m,k
∂v2,k
∂xl

∂v2,k
∂xl

= φ′
2

β2,k +
M1∑
j=1

α2,k,jv1,j

 M1∑
j=1

α2,k,j
∂v1,j
∂xl


∂v1,j
∂xl

= φ′
1

(
β1,j +

N∑
l=1

α1,j,lxl
)
α1,j,l.

This is just straightforward chain rule stuff, but it leads to some ideas about how things
can be implemented efficiently. We can rewrite this:

∂ym
∂xl

= ∇ym∇v2∇xlv1,

where v1 and v2 are M1 × 1 and M2 × 1 vectors. In the notation above, I define ∇y for an
n× 1 vector y with m inputs {xi}mi=1 as the n×m matrix (i.e. the Jacobian)

∂y1
∂x1

∂y1
∂x2 . . . ∂y1

∂xm
∂y2
∂x1

∂y2
∂x2 . . . ∂y2

∂xm... ... . . . ...
∂yn
∂x1

∂yn
∂x2 . . . ∂yn

∂xm

 .

I denote ∇yi to be the i-th row of this matrix and ∇xiy to be the i-th column. So, we’ve
reduced this problem to what’s basically matrix multiplication since, when evaluated at
a point (cheap and easy to do), ∇ym, ∇v2, and ∇xlv1 are 1 × M2, M2 × M1, and M1 × 1
matrices, respectively. Indeed,∇ym is just α3,m,·. The others are similarly easy to evaluate,
given the structure of each layer.
What’s also nice about this way of looking at it is that it suggests an efficient way of

computing it. We can operate recursively. Compute d0 = ∇ym, then compute d1 = d0∇v2,
and finally compute d2 = d1∇x1v1, which is a good way of going about this. It’s so good
that it, in fact, has a name. This is called backpropagation. It’s sort of a mirror image of
the feedforward procedure we did to compute the outputs in the first place.

2



Solving Models: Neural Nets Evan Majic

Training of the Net
Let Φ(x;Θ) be a neural network with N × 1 input vector x and parameters Θ, which

includes all the constant and coefficient terms for each layer. It’s defined as in the previous
part and we know how to evaluate it and its gradients efficiently. With all that in hand, we
want to choose Θ to minimize some loss function L(Θ), which is defined over this loss
function. Usually, this is some type of non-linear least-squares thing, where we want to
minimize

L(Θ) = N−1
N∑
i=1

(yi −Φ(xi;Θ))2,

which has gradient and hessian

∇ΘL = −N−1
N∑
i=1

(yi −Φ(xi;Θ))∇ΘΦ(xi;Θ)

∇2
ΘL = −N−1

N∑
i=1

(
(yi −Φ(xi;Θ))∇2

ΘΦ(xi;Θ)−∇ΘΦ(xi;Θ)∇ΘΦ(xi;Θ)′
)
,

where∇Θ applied to a scalar-valued function returns a column vector. Of course, this can
also be any other loss function. The point is that the loss, the gradient, and the hessian
are very easily computed by hand and/or by automatic differentiation packages.
At this point, we must be chomping at the bit to apply some sort of Newton method. It

would have GREAT convergence properties because we are using the exact derivatives,
rather than the numerical approximations. Not so fast. Sometimes Θ can be massively
high-dimensional. When it gets on the order of a few thousand, the attractiveness of this
option wears off and we have to resort to gradient-based methods. Of course, when Θ is
more manageable (as I think it might be in quite a few cases of ours), we can still use it.
So, suppose that Θ is really high-dimensional. Maybe only computing and applying the

gradient is feasible. In that case, we use gradient descent or some variation of it. This
procedure updates the parameters as follows:

Θt+1 = Θt − γt∇L(Θt),

where γt is called the learning rate. It can change with each step. Different methods
have different ways of setting γt. The important thing is knowing that this is a common
procedure. Other methods, instead of the pure gradient, may use some function of the
gradient or a weighted average of past gradients. This is all done in the hopes that this
algorithm may be better behaved. Rapidly changing search directions due to changes in
the gradient along our path might make for slower convergence, so we dampen changes to
the search direction. An example of a very popular algorithm that uses these approaches
is ADAM (the name is derived from ‘adaptive moment estimation’; further details on this
method here).

3

https://arxiv.org/pdf/1412.6980.pdf


Solving Models: Neural Nets Evan Majic

Newton methods usually perform far better than pure gradient-based methods, which
can be hard to tune and take a long time to converge. In practice, it’s probably a good
idea to prefer Newton methods whenever feasible. In cases where it’s not feasible, ADAM
is the state-of-the-art, standard optimizer for large-scale neural nets. It often dominates
vanilla gradient descent methods, but on challenging problems, it’s a good idea to apply
different methods and see what works best from the point of view of the loss function.

Using the Net to Solve Models
For this, we’re just going to think about the stochastic neoclassical growth model since

that contains mostly all the principles we need to solve even bigger and more complicated
models. We write it as

V(k, z) = max
k′

{
u (zf(k) + (1− δ)k− k′) + β

∑
z′

P(z′|z)V(k′, z′)
}
.

Approach 1: Only Approximate V(k, z).
Let Γ(k, z;Θ) be a neural net approximating V(k, z). If Γ is a good approximation of

V(k, z), we know that the envelope condition should hold. That is

∂Γ
∂k (k, z;Θ) = (zf′(k) + 1− δ) u′ (zf(k) + (1− δ)k− k′) .

This allows us to define a policy function k′ = γ(k, z;Θ), since

k′ = zf(k) + (1− δ)k− [u′]−1
(
(zf′(k) + 1− δ)−1 ∂Γ

∂k (k, z;Θ)

)
.

With automatic differentiation packages, we can compute ∂Γ
∂k exactly, which allows us to

get an exact function for γ(k, z;Θ), given our approximation Γ(k, z;Θ). Given this policy
function, we can define an error function. This error function is

εΓ(k, z;Θ) = Γ(k, z;Θ)− u (zf(k) + (1− δ)k− γ(k, z;Θ))

− β
∑
z′

P(z′|z)Γ(γ(k, z;Θ), z′;Θ).

Then define ε(Θ) = {εi(Θ)}Ii=1 = {εΓ(ki, zi;Θ)}Ii=1, where {(ki, zi)}Ii=1 is some set of points
that we got somehow. They could be obtained by random sampling. They could be ob-
tained by forming a grid. They could also be obtained by simulating our current approx-
imation of the model a number of times. There are a number of options available to us.
Then, with our sequence of errors, our overall loss function L(Θ) = L(ε(Θ)), where L(·) is
some function that maps our errors to a scalar.

4



Solving Models: Neural Nets Evan Majic

One particular example, which is what we typically use in practice, is

L(Θ) = I−1
I∑

i=1
εΓ(ki, zi;Θ)2.

Then, we apply the same training techniques as usual to find Θs that minimize this loss
function. These are the ones that generate a function that solves our problem.
What are the potential difficulties with this approach? First, if ∂Γ

∂k does not satisfy some
conditions (e.g. not-positive or large enough in magnitude), we might not get a real, posi-
tive k′. So, our initial guess forΘ has to be such that Γ(k, z;Θ) satisfies all those conditions.
Second, this will probably be a larger computational burden than the other approaches be-
cause we’re performing lots of operations and the automatic differentiation package has
to differentiate through all those. Third, this is possibly unstable. We could easily move
into a part of the parameter space where γ(k, z;Θ) does not exist (like mentioned in the
first part).

Approach 2: Only Approximate g(k, z).
Let γ(k, z;Θ) be a neural net approximating g(k, z). If γ is a good approximation of g,

then it should satisfy the Euler equation

u′ (zf(k) + (1− δ)k− γ(k, z;Θ))

= β
∑
z′

[P(z′|z) (z′f′(γ(k, z;Θ)) + (1− δ))

× u′ (zf(γ(k, z;Θ)) + (1− δ)γ(k, z;Θ)− γ(γ(k, z;Θ), z′;Θ))] .

As before, this also implies an error function.

εγ(k, z;Θ) = β
∑
z′

[P(z′|z) (z′f′(γ(k, z;Θ)) + (1− δ))

× u′ (zf(γ(k, z;Θ)) + (1− δ)γ(k, z;Θ)− γ(γ(k, z;Θ), z′;Θ))]

− u′ (zf(k) + (1− δ)k− γ(k, z;Θ)) .

We could also consider

ε̃γ(k, z;Θ) =
εγ(k, z;Θ)

u′ (zf(k) + (1− δ)k− γ(k, z;Θ))
,

which can sometimes be more stable. We can define the loss function and train it following
steps we’ve already outlined.
This seems simpler than the previous method and we can define a γ(k, z;Θ) that auto-

matically satisfies the budget constraint by taking

γ(k, z;Θ) = (zf(k) + (1− δ)k)Ψ(k, z;Θ),

5



Solving Models: Neural Nets Evan Majic

where Ψ(k, z;Θ) is a neural network with one output that only takes on values between
zero and one. We don’t have to make any modifications to how we train the parameters
of this model.
So, what’s the problem? Well, in principle, it’s possible for the neural net to learn a

solution that solves the Euler equation, but violates the transversality condition. There is
nothing in our approach here to rule that out. We want to be aware of that issue and make
sure that the transversality condition is not violated. The previous approach does not have
this problem. The transversality condition will be satisfied if our approximation is a value
function that satisfies the associated Bellman equation.

Approach 3: Approximate V(k, z) and g(k, z)
In this approach, we approximate V(k, z) with a network Γ(k, z;ΘΓ) and approximate

g(k, z) with a network γ(k, z;Θγ). If these are good approximations, they must satisfy the
Bellman equation and the envelope condition. That is:

Γ(k, z;ΘΓ) = u (zf(k) + (1− δ)k− γ(k, z;Θγ)) + β
∑
z′

P(z′|z)Γ(γ(k, z;Θγ), z;ΘΓ)

∂Γ
∂k (k, z;ΘΓ) = (zf′(k) + (1− δ)) u′ (zf(k) + (1− δ)k− γ(k, z;Θγ)) .

For each of these, we can define our error functions

εΓ(k, z;ΘΓ,Θγ) = Γ(k, z;ΘΓ)− u (zf(k) + (1− δ)k− γ(k, z;Θγ))

− β
∑
z′

P(z′|z)Γ(γ(k, z;Θγ), z;ΘΓ)

εγ(k, z;ΘΓ,Θγ) =
∂Γ
∂k (k, z;ΘΓ)− (zf′(k) + (1− δ)) u′ (zf(k) + (1− δ)k− γ(k, z;Θγ)) ,

which we can stack into vector-valued error function

ε(k, z;ΘΓ,Θγ) = [εΓ(k, z;ΘΓ,Θγ), εγ(k, z;ΘΓ,Θγ)]
′,

which we can plug into a loss function so that we have some function of {ΘΓ,Θγ} to feed
into the optimizer. This is again another problem that can be dealt with in the framework
we talked about earlier. Once we can reframe our economic problem in terms of loss
functions, then solving the model becomes a purely numerical issue.
The upside of this method is that it circumvents the difficulties we saw with the earlier

methods. We don’t have the same problems with finding sensible starting values for ΘΓ
or have the same level of concern about numerical instability. We also don’t have to worry
about violations of the transversality condition. However, both of these benefits come
with additional computational costs. We have to perform more operations and fit more
parameters.

An Aside on the Endogenous Gridpoint Method

6



Solving Models: Neural Nets Evan Majic

As inputs, we specify a grid for capital (Nk points) and productivity (Nz points). We also
have a transition matrix q, where qij = P(z′ = zj|z = zi). At step t of our procedure gij,t is our
conjectured choice for k′ given state (ki, zj). To start the procedure, we initialize gij,0, which
is an Nk × Nz matrix. Let us call cash on hand w and let I(xout, xin, yin) be an interpolation
function. The inputs are vectors and the output yout is a vector of identical dimension to
xout. Pick a tolerance ε and a maximum number of iterations T. Then, for each t, we apply
the following steps

1. For each i ∈ {1, . . . ,Nk} and j ∈ {1, . . . ,Nz}, compute

w̃ij = [u′]−1

(
β

Nz∑
k=1

qjk(zkf′(ki) + (1− δ))u′ (zkf(ki) + (1− δ)ki − gik,t)
)

+ ki

wij = zjf(ki) + (1− δ)ki.

2. For each j ∈ {1, . . . ,Nz}, compute

g·j,t+1 = I(w·j, w̃·j, k·)

and for each i, j, set gij,t+1 = max{gij,t+1, k0};

3. Compute

Δt+1 = max
ij

|gij,t+1 − gij,t+1|;

4. If Δt+1 < ε or t+ 1 ≥ T, return gij,t+1. Else, set t = t+ 1, gij,t = gij,t+1 and continue.

The idea here is basically backward induction. If we knew we were going to follow a cer-
tain policy tomorrow, what would our policy be today? We continue this backward induc-
tion until we our policy tomorrow is essentially the same as it is today (i.e. our algorithm
converges). This algorithm is VERY efficient. It requires only interpolation, rather than
root-finding.

7


